Pipe Ramming

Second Edition

Prepared by the Pipe Ramming Task Force of the Trenchless Installation of Pipelines (TIPS) Committee of the American Society of Civil Engineers

Published by the American Society of Civil Engineers

Library of Congress Cataloging-in-Publication Data

Names: American Society of Civil Engineers, author.

Title: Pipe ramming / Prepared by The Pipe Ramming Task Force of the Trenchless Installation of Pipelines (TIPS) Committee of the American Society of Civil Engineers.

Description: Second edition. | Reston, Virginia : American Society of Civil Engineers, [2020] | Series: ASCE Manuals and Reports on Engineering Practice ; No. 115 | Includes bibliographical references and index. | Summary: "MOP 115, Second Edition, describes current pipe ramming practices in design and construction of pipelines under roads,

railroads, streets, and other constructed and natural structures and obstacles and includes information on culvert replacements, pipe crushing, slickbores, pipe extraction, as well as assists with horizontal directional drilling projects"-- Provided by publisher.

Identifiers: LCCN 2020012202 | ISBN 9780784415603 (paperback) | ISBN 9780784483022 (adobe pdf) Subjects: LCSH: Pipelines--Design and construction. | Trenchless construction.

Classification: LCC TA660.P55 P54 2020 | DDC 621.8/672--dc23

LC record available at https://lccn.loc.gov/2020012202

Published by American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia 20191-4382 www.asce.org/bookstore | ascelibrary.org

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document. ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefor. The information contained in these materials should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing such information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers-Registered in US Patent and Trademark Office.

Photocopies and permissions. Permission to photocopy or reproduce material from ASCE publications can be requested by sending an email to permissions@asce.org or by locating a title in the ASCE Library (https://ascelibrary.org) and using the "Permissions" link.

Errata: Errata, if any, can be found at https://doi.org/10.1061/9780784415603.

Copyright © 2020 by the American Society of Civil Engineers. All Rights Reserved.

ISBN 978-0-7844-1560-3 (print) ISBN 978-0-7844-8302-2 (PDF)

Manufactured in the United States of America.

26 25 24 23 22 21 20 1 2 3 4 5

Cover photo credits:

Front left: Courtesy of Hammerhead Trenchless Front top right: Courtesy of TT Technologies Front bottom right: Courtesy of TT Technologies Back top: Courtesy of Claude H. Nix Construction Back bottom: Courtesy of Hammerhead Trenchless

MANUALS AND REPORTS ON ENGINEERING PRACTICE

(As developed by the ASCE Technical Procedures Committee, July 1930, and revised March 1935, February 1962, and April 1982)

A manual or report in this series consists of an orderly presentation of facts on a particular subject, supplemented by an analysis of limitations and applications of these facts. It contains information useful to the average engineer in his or her everyday work, rather than findings that may be useful only occasionally or rarely. It is not in any sense a "standard," however, nor is it so elementary or so conclusive as to provide a "rule of thumb" for nonengineers.

Furthermore, material in this series, in distinction from a paper (which expresses only one person's observations or opinions), is the work of a committee or group selected to assemble and express information on a specific topic. As often as practicable the committee is under the direction of one or more of the Technical Divisions and Councils, and the product evolved has been subjected to review by the Executive Committee of the Division or Council. As a step in the process of this review, proposed manuscripts are often brought before the members of the Technical Divisions and Councils for comment, which may serve as the basis for improvement. When published, each manual shows the names of the committees by which it was compiled and indicates clearly the several processes through which it has passed in review, so that its merit may be definitively understood.

In February 1962 (and revised in April 1982), the Board of Direction voted to establish a series titled "Manuals and Reports on Engineering Practice" to include the manuals published and authorized to date, future Manuals of Professional Practice, and Reports on Engineering Practice. All such manual or report material of the Society would have been refereed in a manner approved by the Board Committee on Publications and would be bound, with applicable discussion, in books similar to past manuals. Numbering would be consecutive and would be a continuation of present manual numbers. In some cases of joint committee reports, bypassing of journal publications may be authorized.

A list of available Manuals of Practice can be found at http://www.asce.org/ bookstore.

PR	PREFACEIX				
AC	CKNOV	VLEDGN	ИЕNTS	.XI	
1	INTR		ION	1	
1.		Referen		1 5	
		Referen			
2.	PIPE	RAMMI	NG PROCESS	7	
	2.1	Introdu	iction and Background	7	
		2.1.1	Introduction	7	
		2.1.2	Background	9	
	2.2	Method	d Description	. 11	
	2.3	Equipn	nent Selection and Setup	. 13	
		2.3.1	Guide Rails and Setting Grade	. 13	
		2.3.2	Minimum Space Requirements	.14	
		2.3.3	Depth	. 16	
		2.3.4	Hammer Selection	. 19	
		2.3.5	Air Compressor	. 20	
		2.3.6	Cutting Shoe	. 21	
		2.3.7	Casing Selection and Wall Thickness	. 24	
		2.3.8	Hammer Attachment	. 26	
		2.3.9	Efficiency of Casing Penetration or Advancement	. 29	
		2.3.10	Lubrication	. 32	
		2.3.11	Joining Casing Pieces	. 33	
		2.3.12	Spoil Removal	.36	
		2.3.13	Carrier Pipe Installation	.36	
	2.4	Pilot Tu	ıbe Guidance	.41	
		2.4.1	Pilot Tube Installation	.41	
		2.4.2	Step-Up Casings and Installation Sequence	.42	
	2.5	Typical	Applications	. 42	
		2.5.1	Road and Railroad Crossings	. 42	
		2.5.2	Culverts	. 44	

		2.5.3	Pipe Crushing	46
		2.5.4	Slick Boring	47
		2.5.5	Pipe Extraction	48
		2.5.6	Combining Pipe Ramming and Horizontal Direc	:-
			tional Drilling	49
		Refere	nces	54
2	ρι λ Ν	ININC		55
5.	2 1	Initial	Critaria	55 55
	5.1	311	Casing Diameter and Grade	55 56
		3.1.1	Denth	50 57
		313	Routing	57 58
		3.1.0	Portale Shafte and Working Space	50 59
		315	Sustainability	57 62
		316	Regulations	02 63
	32	Site C	onditions	05 63
	0.2	321	I and Use	05 63
		322	Easter Oscillation Fasements and Rights-of-Way	05 64
		323	Underground Utilities and Other Facilities	04 65
		324	Buriod Objects	05 66
		325	Contaminated Ground	00 66
		326	Special Considerations	00 67
	33	Drolim	pinary Contechnical Considerations	07 70
	34	Projec	t I avout	70 71
	0.1	341	Lavout for Efficient Pipe Ram	71
		342	Alignment and Distance Considerations	71 72
		343	Fffects on Adjacent Structures	72
	35	Cost	onsiderations	73
	0.0	351	Direct Cost of the Pipe Ramming	70
		352	Indirect Social Effect Costs	70 77
		353	Environmental Costs	80
		354	Risk Analysis	00 81
		355	Contingency Costs	01 82
		Refere	nces	83
4.	DETA	ALED S	11E INVESTIGATIONS	85
	4.1	Gener	al	85
	4.2	Geote	Cite Insectionation	85
		4.2.1	Site investigation	86
		4.2.2	Characterization of Subsurface Materials	90
		4.2.3	Geotecnnical Keports	95
		4.2.4	Applicability of Pipe Ramming Based on Subsur	race
	4.2	T Te 114		96
	4.3	Utility	Surveys	96
	4.4	Iraffic	Flow and Access for vehicles and Pedestrians	98

vi

	4.5	Environmental Conditions		
	4.6	Flood Zones		
	4.7	Seismic Considerations	101	
		References	102	
5.	DESIGN		105	
	5.1	General	105	
	5.2	Planning and Permitting	106	
		5.2.1 The Process	106	
		5.2.2 Cost and Schedule	107	
		5.2.3 Hazard Identification	108	
		5.2.4 High Risk Hazards	111	
		5.2.5 Permitting and Design for Special Crossings	111	
	5.3	Exploration	112	
		5.3.1 Planning an Exploration Program	112	
		5.3.2 Site Layout	112	
		5.3.3 Geotechnical Considerations	114	
		5.3.4 Groundwater	115	
		5.3.5 Ground Settlement or Heave	115	
		5.3.6 Deviations in Line and Grade	116	
		5.3.7 Appropriate Casing Size	118	
		5.3.8 Ram Length Limitations	118	
	5.4	Design Considerations	119	
		5.4.1 Basis of Design	119	
		5.4.2 Selection of Line, Grade, and Tolerances	119	
		5.4.3 Casing Material Selection and Dimensions	120	
		5.4.4 Ground Response (Settlement, Heave, and		
		Vibration)	121	
		5.4.5 Joint Configuration	123	
		5.4.6 Driving Resistance of the Casing	124	
	5.5	Documentation	125	
		References	127	
6.	CONS	STRUCTION	129	
	6.1	General	129	
	6.2	Bidding	129	
	6.3	Submittals	130	
		6.3.1 Preconstruction Submittals	131	
		6.3.2 Construction Submittals	134	
		6.3.3 Postconstruction Submittals	135	
	6.4	Measurement and Payment	135	
	6.5	Jobsite Layout and Equipment Setup	138	
	6.6	Survey	139	
	6.7	Launching and Receiving Shafts		
	6.8	6.8 Steel Casing, Leading Edge Treatments, and Welding		

	6.9	Safety Issues	143
	6.10	Differing Site Conditions	143
	6.11	Traffic Control, Fencing, and Barricading	144
	6.12	Quality Control	144
	6.13	Ramming Forces and Lubricants	145
	6.14	Spoil Removal and Disposal	146
	6.15	Inspection and Monitoring	147
	6.16	Reports and Records	148
	6.17	As-Built Drawings and Documentation	149
		References	149
7.	SUM	MARY OF RECENT CASE HISTORIES	
	7.1	General	151
GL	.OSSA	RY	
IN	DEX		193

PREFACE

Manual of Practice No. 115, Second Edition, was prepared by the Pipe Ramming Task Force of the ASCE Committee on Trenchless Installation of Pipelines (TIPS) as part of the Utility Engineering & Surveying Institute (UESI). The manual describes current pipe ramming practices used by engineers and construction professionals in designing and constructing pipelines under roads, railroads, streets, and other constructed and natural structures and obstacles.

This manual has been created by a group of engineers, owners, suppliers, manufacturers, and contractors fully knowledgeable of the method and its use. This manual considers many of the advances that have occurred over the years with pipe ramming. Many of the sections provide a summary of the state of the industry as of 2019. The task force acknowledges that the technology continues to change and that changes in construction continue to develop.

Sections have been written assuming the reader may be new to the various construction methods included in this manual. No document including this one can encompass all the issues on a particular pipe ramming project. Improvements in best practices and technology continue to evolve so quickly that consideration of this manual on any project must take into account not only the specific characteristics of the particular project but also further improvements in best practices and technology.

The engineer of a pipeline is encouraged to consider all trenchless methods before concluding that pipe ramming is the most suitable construction method available. Manuals and Reports on Engineering Practice (known as MOPs) have been written by ASCE for different construction methods. A list of useful references specific to the various trenchless methods is provided at the end of Chapter 1.

If the engineer responsible for the pipeline project does not have a strong background in trenchless design, an engineering firm that specializes in trenchless designs should be consulted to provide a peer review early in the planning/design process to ensure good design choices are being made.