Scour and Erosion

Proceedings of the Fifth International Conference on Scour and Erosion

SCOUR AND EROSION

PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON SCOUR AND EROSION (ICSE-5)

November 7–10, 2010 San Francisco, California, USA

SPONSORED BY The Geo-Institute of the American Society of Civil Engineers

The Environmental and Water Resources Institute of the American Society of Civil Engineers

International Society for Soil Mechanics and Geotechnical Engineering

EDITED BY Susan E. Burns Shobha K. Bhatia Catherine M. C. Avila Beatrice E. Hunt

SIMSG [ISSMGE
A	

Published by the American Society of Civil Engineers

Cataloging-in-Publication Data on file with the Library of Congress.

American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia, 20191-4400

www.pubs.asce.org

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document. ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefore. This information should not be used without first securing competent advice with respect to its suitability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers-Registered in U.S. Patent and Trademark Office.

Photocopies and reprints.

You can obtain instant permission to photocopy ASCE publications by using ASCE's online permission service (<u>http://pubs.asce.org/permissions/requests/</u>). Requests for 100 copies or more should be submitted to the Reprints Department, Publications Division, ASCE, (address above); email: permissions@asce.org. A reprint order form can be found at http://pubs.asce.org/support/reprints/.

Copyright © 2011 by the American Society of Civil Engineers. All Rights Reserved. ISBN 978-0-7844-1147-6 Manufactured in the United States of America.

Preface

Scour and erosion represent some of the most critical threats to maintaining infrastructure and quality of life throughout the world. As the human population expands, the responsibilities of engineers, scientists, and designers continue to increase, and the demands for a creative approach to effective control of scour and erosion also becomes more pressing, requiring cross-disciplinary synthesis of information from the fields of hydraulic and geotechnical engineering. The papers presented at this conference focus on critical issues in the scour and erosion of hillside, fluvial, estuarine, and coastal environments, at the interface of water, soil, and rock.

Following the first four highly successful international conferences on scour and erosion, which were held in College Station, Texas, USA (2002), Singapore (2004), Amsterdam, The Netherlands (2006), and Tokyo, Japan (2008), the fifth international conference was commissioned to continue the tradition of presenting state of the art information on the most pressing issues in scour and erosion. The conference was co-sponsored by the ASCE GeoInstitute and ASCE Environmental and Water Resources Institute, and the resulting conference themes of scour of foundations, erosion of soils, bridge scour, scour and erosion of dams and levees, scour of offshore platforms and underwater pipelines, and rock scour reflect the truly interdisciplinary nature of the subject matter.

All papers in the proceedings were reviewed, re-reviewed, and accepted for publication by at least two reviewers who were selected by the proceedings editors. All papers included in these proceedings are eligible for ASCE awards. The editors would like to thank the reviewers listed below who spent many hours and great care reviewing and commenting on the manuscripts. The time they donated to ASCE is greatly appreciated, and it is through their contributions that the quality and integrity of these manuscripts is maintained.

> S.E. Burns, S.K. Bhatia, C.M.C. Avila, and B.E. Hunt San Francisco, CA, 07-10 November 2010

> > iii

Acknowledgments

ORGANIZING COMMITTEE

Conference Chair: Catherine M.C. Avila, Avila and Associates Consulting Engineers, Inc.

Conference Co- Chair: **Beatrice E. Hunt**, STV Incorporated

Proceedings Editors
Susan E. Burns, Georgia Institute of Technology
Shobha K. Bhatia, Syracuse University
Catherine M.C. Avila, Avila and Associates Consulting Engineers, Inc.
Beatrice E. Hunt, STV Incorporated

Technical Program Giovanna Biscontin, Texas A&M University Martin J. Teal, WEST Consultants

Sponsorships Lisa Koss, PB Americas, Incorporated Ernesto A. Avila, Avila and Associates Consulting Engineers, Inc.

Short Courses Su Mishra, HDR Engineering

Logistics Manager Joseph Scannell, US Engineering Solutions

Special Consultant Jean-Louis Briaud

iv

INTERNATIONAL SCIENTIFIC COMMITTEE

Dr. Erik Bollaert (Switzerland) Dr. Liang Cheng (Australia) Professor Yee Meng Chiew (Singapore) Jean-Jacques Fry (France) Dr. John Harris (UK) Dr. Michael Heibaum (Germany) Dr. Gijs J.C.M. Hoffmans (The Netherlands) Dr. Kornel Kerenyi (United States) Dr. Kiseok Kwak (Korea) Professor Bruce Melville (New Zealand) Professor Buce Melville (New Zealand) Professor Hideo Sekiguchi (Japan) Professor B. Mutlu Sumer (Denmark) Dr. Richard J.S. Whitehouse (UK) Professor Ing. K.J. Witt (Germany) Professor Mendi Yasi (Iran)

NATIONAL SCIENTIFIC COMMITTEE

Dr. George Annandale Mr. Stephen Benedict Mr. Paul Clopper Mr. Stan Davis Dr. Robert Ettema Mr. Jeff Farrar Mr. Jake Gusman Mr. Greg Hanson Professor Peggy Johnson Dr. Kornel Kerenvi Dr. Pete Lagasse Mr. Martin McIlrov Mr. Steve Ng Mr. Silas Nichols Mr. Jorge Pagan-Ortiz Mr. Dennis Richards **Professor Terry Sturm Professor Chris Thorton Professor Ming Xiao** Dr. Lyle Zevenbergen Mr. John Zirkle

Reviewers for the Fifth International Conference on Scour and Erosion

Aminuddin Ab Ghani **Catherine** Avila **Stephen Benedict Bart Bergendahl** Shobha Bhatia Aditya Bhatt **Giovanna Biscontin** Erik Bollaert Susan Burns Paul Clopper **Brian Currier Stanley Davis** John Delphia Jeffrey Farrar **Kevin Flora Robbie Frizzell Christopher Gray** Jake Gusman **John Harris Gijs Hoffmans Beatrice Hunt Peggy Johnson** Michael Kabiling

Jeffrey Keaton Kornel Kerenvi **Casey Kramer** Peter Lagasse Joan Larrahondo **Bruce Melville** Steve Ng John Schuler Jennifer Smith **Terry Sturm** Mutlu Sumer **Martin Teal Ramesh Teegavarapu Anand Govindasamy** Njoroge Wainaina **Richard Whitehouse** Ming Xiao Mehdi Yasi Nii Narh Nortey Yeboah Xinbao Yu Lyle Zevenbergen **Qian Zhao** Jon Zirkle

vi

Contents

Keynote Lectures

Partial Grouted Riprap for Enhanced Scour Resistance
Scour at Offshore Structures
Physics of Rock Scour: The Power of the Bubble
Observational Method for Estimating Future Scour Depth at Existing Bridges
Bridge Scour
An Experimental Study of Scour Process and Sediment Transport around a Bridge Pier with Foundation
Characteristics of Developing Scour Holes around Two Piers Placed in Transverse Arrangement
Local Scour at Bridge Piers: The Role of Reynolds Number on Horseshoe Vortex Dynamics
Trends in Live-Bed Pier Scour at Selected Bridges in South Carolina
Time-Dependent Scour Depth under Bridge-Submerged Flow
In Situ Measurement of the Scour Potential of Non-Cohesive Sediments (ISEP)115 Cary Caruso and Mohammed Gabr
Geotechnical Limit to Scour at Spill-Through Abutments
Maximum Abutment Scour Depth in Cohesive Soils
Erosion of Soils
On the Behaviour of Open Filters under Wave Loading
Two Complementary Tests for Characterizing the Soil Erosion

The Effects of Exopolymers on the Erosional Resistance of Cohesive Sediments 162
R. A. Nugent, G. Zhang, and R. P. Gambrell
Site Factor for Use of Velocity-Based EFA Erosion Rates
Surface Erosion: Erodibility Characterisation and Physical Parameters Effects
Prediction of Exposure Risk for Buried Pipelines Due to Surface Erosion 192 E. Gavassoni and C. B. Garcia
Piping Potential of a Fibrous Peat
Comparison of Geosynthetic Rolled Erosion Control Product (RECP) Properties between Laboratories
Comparison of the Rate of Evaporation from Six Rolled Erosion Control Products
International Practices and Guidance: Natural-Fiber Rolled Erosion Control Products
On the Stress Dependent Contact Erosion in Vibro Stone Columns
Scour and Erosion of Dams and Levees
Suffusion Evaluation—Comparison of Current Approaches
A Life Cycle Approach to Probabilistic Assessment of Levee Erosion
A Practical Approach to Assess Combined Levee Erosion, Seepage, and Slope Stability Failure Modes
Levee Failure Due to Piping: A Full-Scale Experiment
Levee Erosion Prediction Equations Calibrated with Laboratory Testing
Levee Erosion Screening Process

Study of Transient Flow Caused by Rapid Filling and Drawdown in Protection Levees
N. P. López-Acosta, G. Auvinet, and J. L. Lezama
Simulating Levee Erosion with Physical Modeling Validation
Testing and Analysis of Erodibility of Hongshihe Landslide Dam
Earth Dam Failure by Erosion: A Case History
Effect of Seepage on River Bank Stability
Experimental Study of Internal Erosion of Fine Grained Soils
Effect of Suffusion on Mechanical Characteristics of Sand
Hydraulic Erosion along the Interface of Different Soil Layers
Identification of Descriptive Parameters of the Soil Pore Structure Using Experiments and CT Data Stehard Binner, Ulrike Homberg, Steffen Prohaska, Ute Kalbe, and Karl-Joseph Witt
Slurry Induced Piping Progression of a Sand
Experimental Bench for Study of Internal Erosion in Cohesionless Soils 418 D. Marot, Y. Sail, and A. Alexis
Scour of Offshore Platforms and Underwater Pipelines
Field Performance of Scour Protection around Offshore Monopiles
Scour Protection around Offshore Wind Turbines: Monopiles
Scour Assessment in Complex Marine Soils –An Evaluation through Case Examples
Scour Reduction by Collars around Offshore Monopiles
Three-Dimensional Scour at Submarine Pipelines in Unidirectional Steady Current
Yushi Wu and Yee-Meng Chiew