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distribution may be suitable for random variables with bell shape distributions within
finite boundaries. Examples are cost distributions, repair time distributions, and
distributions of fluctuating reservoir levels (Yevjevich, 1972, p. 149). The pdf’s
given by Equations (2.7-30) through (2.7-34) integrated over the range 0 < < 1
produce 1, as required.

Some of the moments of the beta distribution can be rather easily obtained by
integration. For example, for Equation (2.7-34), the first moment is obtained by

= ljzf(t)dt = 30}:3(1 N dt = 30[54— 2fi+ Ei]|‘ _0 @+ 0.1
s ) 4 "5 6° 4 56 2
The mean is at the center of the range for this symmetric pdf.

Formulas for moments of the beta distribution can be found in handbooks
(Moan, 1982, pp. 4-40 to 4-41). For example, the k-th moment of the beta function
is

_(a+ B+ (a+k)!
Y T at gk D) (a)!

(2.7-35)

For the mean, or first moment, k = 1, and with # = 2, and 8 = 2,
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This is the same result as obtained by the integration of Equation (2.7-34).

Examples: (1) Show that Equation (2.7-30) is a pdf. Solution: The integral of
Equation (2.7-30) over the range of the random variable 0 < ¢ < 1is

al

1 1 1
Jf(t)dt:;af

We use the substitution

dt
= +/1- ¢ , which also is ¢ = 1- «*. Introducing - 2du = N

and the substitution of «/; into the integral gives



https://www.civilenghub.com/ASCE/134894119/Hydraulic-Structures-Probabilistic-Approaches-to-Maintenance?src=spdf

PROBABILISTIC APPROACHES TO MAINTENANCE 203

2'{ du
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This proves that Equation (2.7-30) is a pdf.

(2) For Equation (2.7-30), calculate the mean by the moment method and also by
Equation (2.7-35). Solution: The moment method proceeds similar to the integration
in Example (1). The first moment is

1 1ot dt
,uz(!tf(t)dt—;!:/_?m .

With the same substitutions as in Exampie (1) the integral is transformed and solved
for the transformed integration limits: for ¢ = 0, u = 1;and forz = 1, u = 0. The
result is

u=0
U= 22 j«]l— w du= —E[E«II—uZ +—1-arcsin(u)} 1 .
T w2 2 w1 2
The mean, computed by Equation (2.7-35), for k =1, ¢ = -1/2,and f = -1/2,
requires the evaluation of several factorials: 0! = 1, (1/2)! = (1/2)(772), 1! = 1; and
(-1/2)! = 71/2 (see the factorial function in Abramowitz and Stegun, 1970, p. 255).
Substituting these results into Equation (2.7-35) one obtains x = 1/2, the same as by
the moment method. Equation (2.7-30) is a symmetric pdf and the mean is located
in the center of the range.

2.7.7 Poisson Distribution

The Poisson distribution is used to model arrival rates and service rates in
queuing models. There is a connection between the exponential and the Poisson
distributions. Probabilistic (or stochastic) queuing models use exponential
distributions for interarrival time and service time modeling or, equivalently, the
Poisson distribution for arrival rate and service rate modeling (Gross and Harris,
1974, p. 23). The number of arrivals during a period extending from time zero to ¢
is a random variable. The probability of n arrivals during a period ¢, with n > 0 being
positive integers, is derived by setting up so-called stochastic differential-difference
equations. This calculus sheds light on probabilistic mathematics, but the derivation
is somewhat involved and cannot be repeated here. Suffice it to say that the results
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of the derivation are the stochastic differential equations of arrival probabilities
(Gross and Harris, 1974, p. 25). For zero arrivals,

EI_P%:_t(f_)_ ==Ap, (1), (2.7-36a)

where the index relates to the number of arrivals in time ¢. For arrivals n > 1, the
stochastic differential equation is of the form

dp, (t
—1—)6"7:—2 ==Ap,(t)+Ap, ,(t). (2.7-36b)

Equation (2.7-36b) is a first order linear differential equation in which the
dependent variable and its derivative are of the first degree. A solution method
consists of finding an integrating factor (Nielsen, 1962, p. 48). First Equation (2.7-
36b) is rewritten in the form

dp,(t
%() +Ap, (t)=Ap, (t). (2.7-36¢)
Suppose an integrating factor, g(), has been found. Then, multiplying the equation
with it gives

dp, (1)

gl o

+Ap, (1= g)A p, (1) . (2.7-36d)

The integrating factor is of such a nature that it complements the left-hand side of the
equation into an exact differential. The integral of an exact differential is readily
obtained whereupon only the right-hand side needs to be integrated. The probability
D..1(?) is a constant that is known from a previous calculation so that the right-hand
side can also be easily integrated. A hint of an integrating factor is obtained by the
solution of the homogeneous equation, Equation (2.7-36a),

dp, (t)
2 Ap (1) =0.
0 p, (1)

The solution is obtained by separation of variables and integration,

At

p,(1)=ce
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where ¢ is an integration constant. Moving the e-function to the left side gives

e’ p,(t)=c.

Taking the total differential of this equation gives
dp (t
e p, (1= (L2 1 ip, (0] =0

This shows that e * ' is an integrating factor that complements the left side of
Equation (2.7-36d). With g(r) = e At , the left-hand side of Equation (2.7-36d) can be

written as an exact differential d[e?’ P, (t)] and the integral of the equation becomes

t !

[dle* p,()]= [ Ap, ()t . (2.7-36¢)

0 0

An equation explicit in the dependent variable p,(7) is obtained by carrying out the
integration of the left-hand side. The product of functions on the left-hand side exists
only for ¢+ > 0. Freeing p,(¢) of its factor gives

!

p(t)=e [e*Ap, (t)dt (2.7-36f)

1}

where the factor in front of the integral is the result of the integration of the left-hand
side. Equation (2.7-36f) is valid for n > 1. It is a recursive formula which can be
used to find the probabilities for n > 0 once p,(?) is found.

For n = 0, which means zero arrivals during period ¢, Equation (2.7-36a)
applies. By separation of variables one obtains

o

po(t)=e" (2.7-37a)

where A is the mean arrival rate of items per time unit, and A 7 is the mean number
of arrivals in period .
For n = 1, one obtains from Equation (2.7-36f) by integrating from O to z,

t

!
p(t)=e" j‘el'ﬂpo(t)a't =M J.e’“ﬂ etdt=Ate™ . (2.7-3Th)
0 0
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Forn=2: p,(t)= (’Z) i e (2.7-37¢)
Forn=3 p(t)= (/Z)se“‘ . (2.7-37d)
The probability of n = k arrivals in period ¢ is

p,(t) = (’Z?k e . (2.7-38)

Equation (2.7-38) is the pdf of the Poisson arrival process. It is a discrete probability
distribution, where p,(¢) is the discrete probability of k = 0, 1, 2, 3, ..., k arrivals in
period t. The Poisson distribution approaches the binomial distribution for large n and
small p, with 4¢ = n p. The random variable does not have to be time. If A is the
number of accidents per kilometer of highway, then the average number of accidents
over 10 kmis a = 10 A.

The parameter a = A ¢ in Equation (2.7-38) is the only parameter of the
Poisson distribution. It is also the mean as well as the standard deviation of the
distribution: 2 = ¢ = a. The mean can be interpreted as expected number of jobs
arriving at a repair shop during a specified period f, whereas the pdf gives the
frequencies of random realizations that may actually occur causing job queues. Two
examples of Equation (2.7-38) for a = 5 and a = 10 are shown in Figure 2-24.

The non-exceedance probability of the Poisson distribution is

F(k)=e™ Z@—”l . (2.7-39)

iy

where F(k) is the discrete cdf of the Poisson distribution whose ordinates only exist
for integer numbers.

A stochastic process with practical applications is the  compound Poisson
process. A practical example is the sum of costs that accrue by the random
occurrence of repair jobs during some time period, such as a month (Parzen, 1965,
p. 128),

NE@

X(=>.C,



https://www.civilenghub.com/ASCE/134894119/Hydraulic-Structures-Probabilistic-Approaches-to-Maintenance?src=spdf

PROBABILISTIC APPROACHES TO MAINTENANCE 207

where X(¢7) is the stochastic variable, i.e., the total of N(f) random costs, C,, that
occur during a month 7 by a Poisson arrival process of repair jobs.

Examples: (1) Calculate the probability of n = 4 arrivals in period 7 with p,(#) given
by Equation (2.7-37d). Solution: Using Equation (2.7-36f), one obtains

y At
pa()=e* J‘e'“/%pg,(t)dt: e I ’“/1( ) e Mdt =
0 0 !

4
(’141') e—/lt

(2) What is the probability that up to and including six arrivals occur in period ¢ =
10 h, given the average arrival rate is 4 = 0.6 h™'. Solution: The average number of
arrivals is 4 ¢ = 0.6 - 10 = 6. The non-exceedance probability of six arrivals is
according to Equation (2.7-39)

F(6) = py(10) + p,(10) + p,(10) + p;(10) + p(10) + p5(10) + ps(10) =

= (6°%0!) e® + (6'/1) e® + (6*/2)) &5 + (6°/3)) &6

+ (6*/41) e® + (6°/5!) e'® + (6°/6!) e®

= 0.00248 (1 + 6 + 18 + 36 + 54 +64.8 + 64.8) = 0.6066.
(3) The binomial cdf, Equation (2.7-8), is adapted to Example (2) to find the
probability of 6 successes in 10 trials, or the probability of 6 arrivals (successes) in

10 hours ( n =10 trials). For n =10, k = 6, p = 6/10 = 0.6, Equation (2.7-8)
becomes

F(6) = i[B(lO,i)-O.G L0411

i=0
= B(10,0) - 0.6° - 0.4 + B(10,1)- 0.6' - 0.4° + B(10,2) - 0.6 - 0.4
+ B(10,3) - 0.6’ - 0.47 + B(10,4) - 0.6* - 0.4°+ B(10,5) - 0.6° - 0.4°
+ B(10,6) - 0.6° - 0.4

=1-1-0.000105 +10 - 0.6 - 0.000 262 + 45 - 0.36 - 0.000 655

+ 120 - 0.216 - 0.001 64 + 210 - 0.129 6 - 0.004 096
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+ 252 - 0.077 76 - 0.01024 + 210 - 0.046 66 - 0.025 6
= 0.618 = 0.62

This result was also obtained by Example (4) of Section 2.7.2.
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Figure 2-24: Poisson pdf’s for random arrivals  in the form of flx) = a* ¢™/x!
where a = A ¢, and x = k for average arrivals £ = A¢ = 5 and 10. The arrival
probabilities are highest around the mean. The random variable x = k is a
discrete variable which exists only for integers x > 0. The f{x) are discrete
probabilities, which should be shown as bars over the x’s for which they exist.
The line connections between the f{x) represent only visual aids.

fix}fora=6

(4) Calculate the probability of up to two defective items arriving in a production
stream over a 50 h period if the average defect rate is 4 = 0.01 h™'. Compare the
result with the binomial distribution. Solution: The probability of up to two defective
items is given by F(2). For A7 =0.01-50 =0.5,

FQ2) = py(50) + py(50) + py(50)
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= (0.5%0!) ¢ + (0.5'/11) &% + (0.5%/2!) %7
=0.6065 + 0.3033 + 0.0758 = 0.9856.

This result is very close to the first part of Example (7) of Section 2.7.2, which
produced F(2) = 0.9862. It demonstrates that the Poisson distribution approaches the
binomial distribution for large » and small p. The Poisson probabilities are easier to
calculate than the binomial probabilities.

2.7.8 Weibull Distribution

The Weibull distribution was first proposed for “a statistical representation
of fatigue failures in solids” (Moan, 1982, p. 4-47), but it also is used in hydrology
because it is applicable for positive only random variables (Stedinger et al., 1993, p.
18.13). It is a three-parameter distribution and therefore is quite flexible in the shapes
it can simulate. Various formulas are given in the numerous references. Here, the pdf
is given as referred to by Parzen (1965, p. 169):

X~C &
)

f(x)= —ﬁ—(ﬁ)“e'(fc (2.7-40)
v—C v—¢C

where f(x) exists only for x > ¢, and is zero for x < c; c is the location parameter,
k is the shape parameter, and v is the scale parameter. Equation (2.7-40) looks
somewhat complex, but it is actually quite simple and can be easily integrated to
obtain the non-exceedance probability. For this purpose, we introduce the substitution

Substituting # and du into the integral of the cdf, one obtains

F(x)= [f(x)dx = [ e d(-uy=-e™.

Evaluating the boundaries gives
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X~ &

—(
Fx)=1-e 7 . (2.7-41)

The simple relation between f{x) and F(x) allows easy use of the Weibull distribution
in the calculation of the hazard function (Section 3.6).

A graphical determination of parameters is based on taking the double
logarithm of a form derived from Equation (2.7-41):

1 =y
1- F(x)
This leads to
1
Inln——)=kIn(x-c)-kIn(v-c). 2.7-42
(n—y) = KlnCx =)= kinv=0) (2.742)

Equation (2.7-42) is a straight line in a double-log diagram:

Y=kX+C (2.7-43)
where
Y = In(ln———), (2744
1- F(x)
X=In(x-¢), (2.7-45)
and
C=-kIn(v-c) . (2.7-46)

where Y and X are the coordinates of the double log diagram, C is the empirical
constant or intercept, and k is the slope of the line (Moan, 1982, p. 4-49).

Special Cases of the Weibull distribution: The general form of the three-parameter
Weibull distribution, Equation (2.7-40), can be simplified for special cases:
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(1) If the distribution starts at x = 0, then ¢ = 0, and Equation (2.7-40) takes the
form

F)=EEpe Y 2.7-47)
vV Vv

and

X

Fx)=1-¢ (2.7-48)

where x, v, and k > 0. This form is frequently used. Its mean and variance are
1
u=vIi({+ -k—) (2.7-482a)
and
2 2 2 1.5
o =V {F(l+;)—[l’(1+—l;)] } (2.7-48b)

where I'(.) is the gamma function (Stedinger et al., 1993, p. 18.13; Benjamin and
Cornell, 1970, p. 284). For k = 2, T'(3/2) = 0.5 7 = 0.88623, and for integers,
I'(n+1) =n'Forn =1, I'2) = 1. Hence, fork = 2, u = 0.8862 v, and & =
0.2146 v*. Both u and ¢* are proportional to vand V?, respectively, as is shown by
Equations (2.7-48a) and (2.7-48b), with the gamma functions providing the
proportionality coefficients. The parameters k and v can be found from a data fit
using Equations (2.7-44) to (2.7-46). According to Equation (2.7-43), k is the slope
of the line fitting the data. More on gamma functions is found in Abramowitz and
Stegun (1970, p. 255).

(2) Fork = 1, and ¢ = 0, A = 1/v, Equation (2.7-40) becomes
f(x)=2e™ (2.7-492)
and

F(x)=1-e™*. (2.7-49b)
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