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number of clusters, such as Elbow method, Average Silhouette method and Gap Statistic 

Method. Here the average Silhouette method is used, and the result is shown in Figure 8. Both 2 

and 3 clusters seem to be acceptable.  

 
Figure 5. Correlograms for Different Age Groups of Pipes 

SURVIVAL ANALYSIS 

Using the whole water pipe dataset of Utility A, the non-parametric survival curves of all 

water pipes can be developed. This kind of proportional hazards model can be visualized with a 

Kaplan-Meier plot. Survival curves can also be fitted with parametric distributions. The most 

commonly used distributions are Weibull distribution, exponential distribution, log-normal 

distribution and log-logistic distribution. Such kinds of models are parametric, and thus belong to 

accelerated failure time (AFT) models. When the pipe dataset is partitioned into different groups, 

the influence of a grouping covariate on the survival probability can be illustrated via a 

categorized Kaplan-Meier plot.  
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Figure 6. Distribution of Pipes in terms of Age and Diameter 

 
Figure 7. Cluster Results with Different Numbers of Clusters 

 
Figure 8. Optimal Number of Clusters 

In the dataset of Utility A, the major material types include CI, DI, CU, GS, HDPE and PVC. 

It should also be noted that the CI pipes installed prior to 1930 are specially sorted out as 

‘CIPre1930’ in the dataset of Utility A. In this analysis, we adopt the representation and notation 

systems of the utility. Based on the stratification by pipe materials, Kaplan-Meier plots for 
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different material types are created separately, as are shown in Figure 9 (a). CI pipes installed 

prior to 1930 are the most durable among different materials’ pipes, while HDPE pipes are least 
likely to survive. The parametric survival curves by subgroups are also developed. To make the 

plot legible, only the survival models fitted with Weibull distribution are shown in Figure 9 (b).  

 
Figure 9. Survival analysis stratified by pipe materials 

CONCLUSION 

This paper presents a comprehensive analytical framework for statistical analysis of water 

pipeline field performance data. The proposed framework incorporates three objectives (i.e. 

failure, performance and risk) and employs both exploratory and predictive statistical modelling 

approach.  

Some knowledge and findings are discovered and verified in the preliminary analysis. For 

utilities that do not record pipe types, pipes with diameters equal to or larger than 16 inches can 

be treated as transmission pipes and those with diameter less than 16 inches can be considered 

distribution pipes. In the initial stage (e.g. first 30 years) pipe’s internal surface gets rougher with 
the increase of pipe age significantly, while afterwards the friction factor will not be influenced 

with pipe age as significantly. This finding is not only about trends but also the trend of the 

strength of trends. Premature failures can be detected and investigated. Both 2 and 3 clusters are 

appropriate for cluster analysis. According to survival analysis of Utility A, CI pipes installed 

prior to 1930 are the most durable among different materials’ pipes, while HDPE pipes are least 
likely to survive. In the survival analysis, most of the recorded breaks in HDPE pipes occurred in 

the early stage, while most of the breaks in CI pipes occurred in the late stage. There are few 

recorded breaks for HDPE pipes after the age of 75 years. This is the main reason why the 

survival curve of HDPE pipes exhibits a steep downward trend.  
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ABSTRACT 

Many water pipeline systems in the United States and several other countries are in a 

deteriorated state needing immediate intervention. One of the critical challenges to such 

interventions is the dearth of economical and reliable inspection tools to assess the condition of 

the pipeline assets and prioritize their rehabilitation. Although few innovative inspection 

techniques have been developed and demonstrated in the last few years, they are reserved to be 

used on a limited number of seemingly failing assets due to high inspection costs. The fields of 

embedded sensing and artificial intelligence techniques offer unique opportunities to predict 

asset conditions based on hydraulic monitoring data from water pipeline systems. This paper 

proposes a novel asset-management scheme for water pipeline systems where pipeline flow and 

pressure data streamed in through the SCADA systems are leveraged to deduce uncertain asset 

parameters such as reduced pipe diameters and roughness values. To demonstrate the proposed 

scheme, a well-known water distribution network is used in this paper to show that pressure and 

flow data monitored at three different locations each can inform the roughness values of all the 

pipelines in the system. Firstly, the roughness coefficients of all the pipelines in the chosen water 

network are randomly reduced within a certain reasonable range in order to characterize the real-

world system behavior. Subsequently, synthetic monitoring data for pipeline pressure and flow is 

generated using hydraulic simulations for 200 scenarios with varied nodal demands. Finally, an 

optimization algorithm is developed based on a reverse engineering approach to predict pipeline 

roughness coefficients using the synthetic monitoring data. Least of the minimum squared error 

between the modeled and synthetic flow (and pressure) data for all the 200 scenarios are 

considered the objectives in the optimization process. MATLAB programming interface is used 

in this study in conjunction with EPANET hydraulic modeling tools. The proposed scheme and 

the included results of this paper will offer a promising and powerful approach towards asset 

management where system-wide monitoring data could inform the condition of the assets and 

subsequently support prioritization for rehabilitation. 

INTRODUCTION 

Asset management entails gathering knowledge about the condition of various assets in order 

to make informed decisions on systematic maintenance, rehabilitation, and capital improvement 

planning. Asset management is deemed more critical when it comes to the limited budget 

dedicated to pipeline rehabilitation as well as the emergence of various ageing pipelines around 

the world (Moglia et al. 2006). Particularly, what hinders the fast and accurate asset management 

for stakeholders is the tough nature of condition assessment and record keeping of data by 

relying on conventional inspection using outdated tools and time-consuming methods (Newton 

and Christian 2015). Also, the labor-intensiveness associated with inspection and condition 

assessment is another challenge that needs to be addressed. Furthermore, even with the best of 
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the available technologies, it may not be possible to accurately assess the condition of all the 

assets in the system. This paper presents a novel framework to predict the condition of pipeline 

assets based on hydraulic monitoring data that could be available through SCADA systems. 

Given the large percentage of metal pipelines currently in service in our drinking water systems, 

pipeline roughness is considered in this study to be a critical parameter that needs to be 

predicted. Metal pipelines tend to get rougher with age and deterioration, and this phenomenon 

may be aggravated by corrosion and scaling inside the metal pipelines. Furthermore, the 

remaining hydraulic diameter in older metal pipelines may be much smaller than the actual 

diameters of the pipelines. Determining how rough a pipeline has become with age and the 

effective internal diameter will be useful information for asset management purposes. This paper 

demonstrates the prediction of pipeline roughness based on SCADA data. 

Table 1. Hanoi Original and Alternative Network Variations 
Pipe Index Original Network Alt#1 

Pipe Diameter(mm) Pipe Roughness (C) Pipe Diameter(mm) Pipe Roughness (C) 

1 1066.8 130.0 1023.8 82.0 

2 1524.0 130.0 1482.0 90.0 

3 1066.8 130.0 1036.8 89.0 

4 1066.8 130.0 1029.8 85.0 

5 1066.8 130.0 1029.8 69.0 

6 914.4 130.0 870.4 66.0 

7 762.0 130.0 716.0 88.0 

8 914.4 130.0 869.4 70.0 

9 762.0 130.0 722.0 63.0 

10 762.0 130.0 752.0 68.0 

11 609.6 130.0 598.0 81.0 

12 609.6 130.0 599.2 80.0 

13 508.0 130.0 473.0 72.0 

14 609.6 130.0 569.6 87.0 

15 508.0 130.0 474.0 70.0 

16 914.4 130.0 879.4 69.0 

17 1066.8 130.0 1030.8 65.0 

18 914.4 130.0 878.4 75.0 

19 914.4 130.0 884.4 80.0 

20 1066.8 130.0 1028.8 65.0 

21 508.0 130.0 476.0 76.0 

22 762.0 130.0 722.0 88.0 

23 914.4 130.0 869.4 80.0 

24 508.0 130.0 467.0 73.0 

25 508.0 130.0 466.0 64.0 

26 457.2 130.0 423.2 77.0 

27 609.6 130.0 573.6 64.0 

28 762.0 130.0 719.0 88.0 

29 762.0 130.0 728.0 85.0 

30 914.4 130.0 873.4 82.0 

31 914.4 130.0 865.4 74.0 

32 508.0 130.0 471.0 67.0 

33 914.4 130.0 864.4 68.0 

34 609.6 130.0 559.6 75.0 
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METHODOLOGY 

The approach into how asset management is carried out in this paper relies on reverse 

engineering. A deteriorated water distribution network representative of a typical water system is 

first developed. The deterioration is characterized by reduced pipe roughness (C) values as well 

as effective internal pipe diameters (assumed to have been reduced by corrosion-related scaling). 

A popular benchmark water distribution network – Hanoi network (Fujiwara and Khang 1990) 

depicted in Figure 1 – is used in this study to demonstrate the proposed condition assessment 

approach. The diameter of each pipeline is randomly reduced by some amount ranging between 

30 to 50 mm, whereas the roughness coefficient (C) of each pipeline is randomly reduced to a 

value between 60 and 90 from its original value of 130. Several alternate Hanoi networks were 

generated by randomly reducing the pipe diameters and pipe roughness coefficients within the 

previously stated ranges. One such alternate network (which is referred hereafter as Alt #1) is 

used to demonstrate the proposed condition assessment prediction framework. Table 1 shows the 

pipe diameters and roughness coefficient values in the original Hanoi network as well as the 

Alt#1 network. It is ensured that the reduction in pipe sizes and roughness coefficient values did 

not affect the ability of Alt#1 network in meeting nodal demands. 

Once the Alt#1 network, which is assumed to be representative of a deteriorated network, is 

developed, monitoring locations are identified for SCADA type real-time hydraulic data 

acquisition from the Alt#1 network. It is assumed that pressure monitoring stations are initially 

located at nodes 16, 23 and 25 in Alt#1 network and flow monitoring stations are located in 

pipelines 5, 27 and 29; however, more monitoring locations at other nodes and pipes are assumed 

for sensitivity analysis purposes. Essentially, these monitoring stations would allow acquisition 

of pressure and flow data from these locations. It is also assumed that the Alt#1 network has 

smart water meters at the demand nodes that would relay the consumption data at any time point 

that would correspond to the hydraulic monitoring parameters (i.e., pressures at nodes 16, 23 and 

25 and flows in pipes 5, 27, and 29) at the same time point. Nodal demands are expected to vary 

with time on a given day and correspondingly the network hydraulic parameters vary. In a real-

world scenario, the water network performance varies in response to change in water demands 

and change in the availability of water network components. Assuming there are no failures in 

the water system, the inputs for modeling the performance of the water network would be nodal 

demands and the outputs would be pressures at different locations in the system and flows in all 

the pipes. In order to capture the hydraulic system dynamics of the Alt#1 network, 200 sets of 

inputs (i.e., nodal demands) and corresponding pressures at nodes 16, 23 and 25 and flows in 

pipelines 5, 27 and 29 are generated as synthetic monitoring data. The nodal demands are varied 

in ±20% of the base nodal demands of the original Hanoi network. EPANET 2.0 software is used 

to perform the hydraulic simulations and MATLAB programming interface is used to develop 

the algorithm in conjunction with an open-source EPANET 2.0 extension toolkit library. 

Finally, an optimization algorithm is formulated where the decision variables are the pipe 

roughness coefficients. The algorithm attempts to minimize the variation (quantified through 

mean squared error – MSE) between the calculated and actual (i.e., synthetic) values for 

pressures at nodes 16, 23 and 25 and flows in pipelines 5, 27 and 29 over the 200 demand 

scenarios. Genetic algorithm is used to solve this optimization problem which would result in the 

most optimal set of pipe roughness coefficients. Comparison of the optimized pipe roughness 

coefficients with the actual pipe roughness coefficients would validate the proposed approach. 
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Demonstration on Alt#1 Network 

As shown in Figure 1 below, the Alt#1 network comprises of 31 nodes, 34 pipelines and one 

reservoir (Fujiwara and Khang 1990). 

 
Figure 1. Alt#1 (Hanoi) Water Distribution Network Layout 

Considerations for the Optimization Formulation 

The algorithm simply aims at feeding a set of randomized pipe roughness values to the 

previously provided synthetic monitoring data (200 scenarios of nodal demands and network 

hydraulic performance data) in the study. Then, a hydraulic simulation is carried out using 

EPANET toolkit in MATLAB, and the outputs for the calculation of the objective function 

would be flow rate and pressure at the monitoring locations. In this case, the mean squared error 

(MSE) between the modeled and synthetic flow and pressure data has been formulated as the 

objective as shown in Equation 1 below. 

A. Decision variables: {x1, x2,…., and x34} →where, x1 is the roughness coefficient of 
pipe 1 and so on. The decision variables are constrained to vary between 50 and 130. 

B. Objective: Minimize the following 
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  (Eq. 1) 

Where, i is the simulation number (i.e., the scenario number ranging from 1 to 200); ai, bi, 

ci, di, ei, fi are estimated pressures and flows during optimization; ai is the pressure at 

node 16 in simulation i; bi is the pressure at node 23 in simulation i, ci is the pressure at 

node 25 in simulation i; di is the flow in pipe 5 in simulation i; ei is the flow in pipe 27 in 

simulation i; fi is the flow in pipe 29 in simulation i; 

Where, P16i, P23i, P25i, F5i, F27i, F29i are actual pressures and flows; P16i is the 
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pressure at node 16 in simulation i, P23i is the pressure at node 23 in simulation i, P25i is 

the pressure at node 25 in simulation i; F5i is the flow in pipe 5 in simulation i, F27i is 

the flow in pipe 27 in simulation i; F29i is the flow in pipe 29 in simulation i; 

C. Constraint Function: The only constraint that might cause trouble halfway through the 

optimization process has turned out to be the pressure values that intermittently violate 

the minimum pressure limits. So, by considering penalty functions, the optimization 

model is secured to yield reliable results. The minimum pressure value to consider has 

been 10 meters. 

Table 2. Results for simulations associated with 4 scenarios of predicting roughness 

coefficients 
Scenarios Generation/ 

Population 
Size for GA 

Number of 

Monitoring 
Station 

Roughness 

(Actual 
Values) 

Roughness 

(Actual 
Values) 

Roughness 

(Actual 
Values) 

Flow and 

Pressure 
MSE 

Roughness 

MSE 
[sum((Ra-R ] 

o)^2) Pressure Flow 

Scenario 1 200/200 3 3 82 82 0 0 

90 90 

Scenario 2 300/600 5 5 82 84 14.693 17 

90 89 

89 87 

85 83 

69 71 

Scenario 3 500/500 8 5 82 90 1.3085 80 

90 86 

89 89 

85 85 

69 69 

Scenario 4 200/200 3 3 82 87 52.118 105 

90 88 

89 83 

85 86 

69 71 

66 71 

88 85 

70 69 

Results and Discussion 

Table 2 represents four scenarios where multiple iterations have been simulated to analyze 

the behavior of roughness coefficient prediction model through mean square errors of roughness 

values (actual, constant values (Ra) of roughness that were acquired through Alt#1 and obtained 

values (Ro) that are the results of the optimization model for each simulated scenario) based on 

flow and pressure monitoring data. As can be seen in Table 2, Scenario 1 was simply meant to 

solve for the roughness values of only two pipes. This scenario was run using the GA 

optimization code for 200 population size and generations, and thus yielded perfectly accurate 

results with actual and predicted roughness coefficients being the same and the mean square 

error (MSE) of zero for both flows and pressure values at three monitoring stations. However, 

Scenarios 2 and 3 have been devised for the first five pipes of Hanoi Alt#1 network; Scenario 3 

where the number of monitoring stations was increased to eight for pressure and five for flow 

yielded more accurate MSE for roughness in comparison to Scenario 2 with five stations for both 
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flow and pressure. However, the MSE-based objective functions in this optimization problem 

probably look to be more dependent on the smaller mutation shrink factor (0.01 – 0.02) as well 

as optimized numbers of both population size (approximately twice the number of decision 

variables) and generations, insofar as the number of decision variables are on the increase, 

scenario by scenario. This means that the MSE for roughness in Scenario 2, accounting for 600 

of population size, turned out to be slightly smaller than that in Scenario 3 where the population 

size equals 500. To compare the results more critically, Scenario 4 along with the conventional 

3-station, 200-generation-and-population-size status yielded somewhat much less accurate 

results both on MSE for Flow/Pressure and roughness in presence of eight decision variables in 

comparison to scenario 1 with only two decision variables yet similar GA parameters, which 

makes the operation of the optimization model computationally expensive to an excessive extent. 

Table 2 aims at clarifying that as the number of decision variables increases, higher number 

of generations and populations will be needed to extend the search span. Besides, the accuracy 

and sensitivity with which the optimization model attempts to converge to the optimal solution 

appear to be improved as the number of monitoring stations of flow and pressure rises. However, 

accurate sensitivity analysis as to how many monitoring stations as well as where to place 

monitoring locations should be the integral part of associated future work in this study. For 

instance, by comparing Scenario 2 and Scenario 3, it is evident that the obtained set of roughness 

values in Scenario 3, where higher monitoring locations and more generations and population 

sizes are considered, looks to be in better proximity to the actual roughness values than that in 

Scenario 2. 

Table 3 includes results of two more scenarios associated with predicting roughness values 

for all 34 pipes utilizing 8 pressure stations and 5 flow stations accommodated on Alt#1 network. 

It apparently demonstrates that possibly as the number of decision variables increase 

drastically, the accuracy with which the GA method should yield results drops considerably, as 

the MSEs in Table 3 equal much higher values, thus less accurate results. 

Table 4 suggests Scenarios 7, 8, and 9, where the first 12, 14, and eight pipes of Alt#1 Hanoi 

network have been attempted to be optimized for their roughness values. Thanks to the tuning of 

GA parameters including mutation shrink and crossover factors as well as considering 3 discrete 

objective functions rather than the summation of all the MSE values and ultimately tightening 

the lower and upper bounds of each decision variable, the accuracy of these sets in comparison to 

those in Table 2 appears to have increased proportional to the number of decision variables 

(number of pipes involved in optimization), contributing to smoother convergence to the optimal 

solutions and thus more accurate results. This demonstrates that both actual and obtained 

roughness values in these scenarios, especially in scenario 9, tend to be similar. 

Observations and Future Work 

Due to the high number of decision variables (34 pipe roughness values) and rather low 

numbers of generations, it is probably predicted that the actual search span for accurate results is 

much more extensive than the maximum 500 generation and population size which was utilized 

in this study. It was observed during the optimization process of at least 12 scenarios that after 

specific numbers of generations prior to the termination of optimization process, the optimization 

outcome tended to converge on some obtained values and no more mutation or newly generated 

set of decision variables was carried out anymore. This apparently demonstrates that owing to 

the extremely vast search span, the optimization algorithm might have stuck and trapped in local 

optima and fail to search for the global optima. Therefore, part of the future work in this study 
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