

GEOMETRIC DESIGN PROJECTS FOR HIGHWAYS

An Introduction SECOND EDITION

J.G. Schoon

American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia 20191–4400 Abstract: This book provides an introduction to geometric design of highways by means of examples and projects that emphasize basic specifications, approaches to preliminary route selection, alignment, drainage, cost, and environmental concerns. Intended as a supplementary text to standard texts on highway engineering for undergraduate and post-graduate university courses, it presents projects from the initial provision of a topographic map and specifications through to the investment and user cost estimates of a particular highway. The ability to connect the various aspects of highway geometric design in terms of a complete project is stressed to assist students and practitioners to understand the design linkages inherent in the design process related to topography and design policy. While intended primarily for university instruction at undergraduate and graduate levels, the book will also be of benefit to transportation and landuse planners wishing to become familiar with the major features of geometric design as it relates to other forms of infrastructure development.

Library of Congress Cataloging-in-Publication Data

Schoon, J.G. (John George), 1937-

Geometric design projects for highways: an introduction / by J.G. Schoon.—2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN 0-7844-0425-9

1. Highway engineering. 2. Roads—Design and construction. I. Title.

TE145 .S36 1999 625.7—dc21

99-054577

The material presented in this publication has been prepared in accordance with generally recognized engineering principles and practices, and is for general information only. This information should not be used without first securing competent advice with respect to its suitability for any general or specific application. The contents of this publication are not intended to be and should not be construed to be a standard of the American Society of Civil Engineers (ASCE) and are not intended for use as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document. No reference made in publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. ASCE makes no representation or warranty of any kind whether express or implied concerning the accuracy, completeness, suitability or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefor. Anyone utilizing this information assumes all liability arising from such use, including by not limited to infringement of any patent or patents.

Photocopies: Authorization to photocopy material for internal use or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by ASCE to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$ 8.00 per chapter plus \$.50 per page copied is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923. The identification for ASCE Books is 0-7844-0425-9/00/\$8.00 + \$.50. Requests for special permission or bulk copying should be addressed to Permissions & Copyright Dept., ASCE.

The source of selected material used in chapter 2 is taken from A Policy on Geometric Design of Rural Highways, Copyright 1965; Roadside Design Guide, Copyright 1989; and A Policy on Geometric Design of Highways and Streets, Copyright 1994, by the American Association of State Highway and Transportation Officials, Washington, D.C. Figure 2-13 is based on a chart appearing in Figure 9 of A Manual on User Benefit Analysis of Highway and Bus-Transit Improvements, Copyright 1977, by the American Association of State Highway and Transportation Officials, Washington, D.C. Used by permission.

Copyright © 2000 by the American Society of Civil Engineers, All Rights Reserved. Library of Congress Catalog Card No.: 99-054577 ISBN 0-7844-0425-9 Manufactured in the United States of America.

Contents

Preface	ix
Chapter 1: Factors Affecting Selection of the	
Highway Route	1
Examination of Natural and Man-Made Features	1
Identification of Technically Feasible Routes	7
Objectives in Identifying Acceptable Routes	10
Route Selection and the Design Process	12
Bibliography of Selected Publications	15
Chapter 2: Design Controls and Guidelines	19
Design Controls	19
Elements of Design	27
Cross Section Elements	42
Depth and Height of Cut and Fill Sections	48
Intersections at Grade	52
Economic Analysis	52
Environmental Requirements	56
References	56
Chapter 3: Application of Geometric Design Principles	
to Route Design	59
Preliminary Route Layout and Geometric Design	59
Example of Developing and Checking Alternative Alignments	64
Non-Standard Situations	75
Drainage Provisions	75
Construction Cost Estimate	78
Economic Cost	78
Environmental Impact Analysis	79
Automated Geometric Design	82

Chapter 4: Example of a Rural Highway Geometric Design	86
Example of Preliminary Rural Highway Design	86
Objectives of Example	87
Scope of Preliminary Design	88
Title Page	90
Table of Contents	90
Location Map	90
Background and Specifications	92
Major Environmental Features	95
Alternative Routes	95
Screening of Alternatives	99
Horizontal Alignment	99
Profile (Vertical Alignment)	103
Examples of Curve Designs	105
Coordination of Horizontal and Vertical Alignments	105
Cross Sections	105
Earthwork Computations	114
Outline of Drainage Requirements	116
Intersection Design	121
Construction Cost Estimate	121
Summary of Likely Environmental Issues	123
Economic Cost of Project	125
Summary of Key Technical Features	129
Chapter 5: Preliminary Highway Geometric Design	
Projects	131
Route Selection and Design Projects	131
Report Format and Check List	136
Appendices	
Topographic map symbols	143
Construction of Cross Sections	148
Index	149

List of Figures and Tables

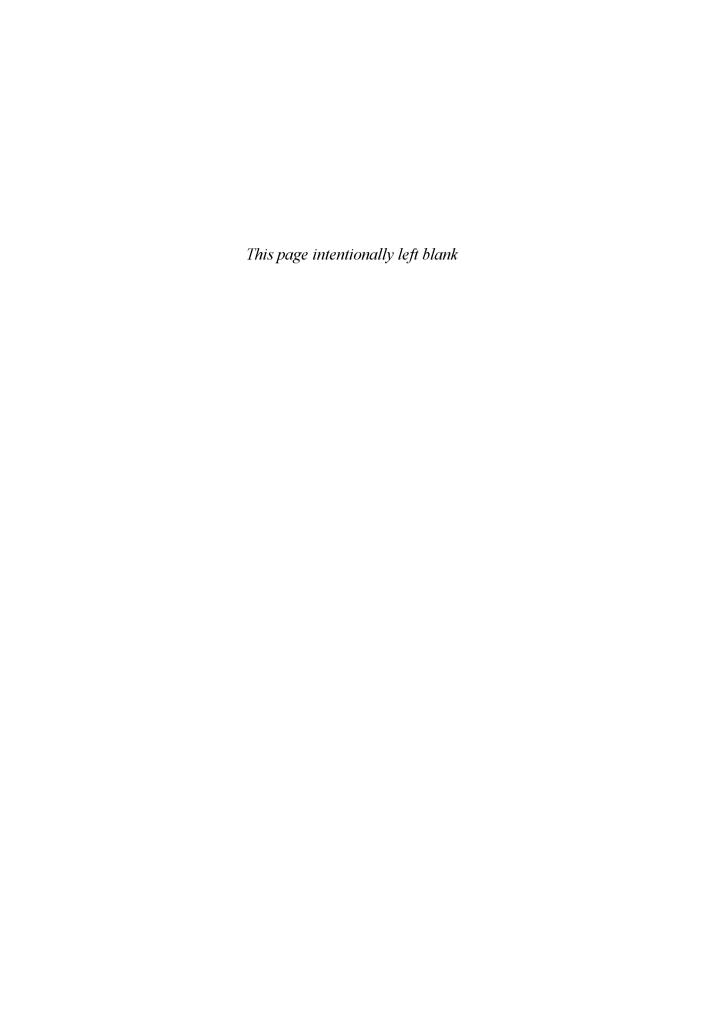

FIGURES

Figure 1 Highway geometric design process - major features	xi
Figure 1-1 Selected area of interest	4
Figure 1-2 Examples of topographic and cultural features	5
Figure 1-3 Examples of soil and vegetation features	6
Figure 1-4 Examples of stereographic aerial photographs	8
Figure 1-5 Examples of oblique aerial photographs	9
Figure 1-6 Cost and design level relationships	11
Figure 1-7 Examples of highways built to different design standards	13
Figure 2-1 Examples of terrain categories	24
Figure 2-2 Elements of and total passing sight distance - two-lane highway	29
Figure 2-3 Diagrammatic profiles showing methods of attaining	
superelevation for curve to the right	32
Figure 2-4 Range of upper values - relation between degree of curve and value	
of middle ordinate necessary to provide stopping sight distance on horizontal	
curves under open conditions	35
Figure 2-5 Critical lengths of grade for design, assumed typical heavy truck	
of 180 kg/kW, entering speed = 90 km/h	37
Figure 2-6 Design controls for crest vertical curves, for stopping sight distance,	
and open road conditions	38
Figure 2-7 Design controls for sag vertical curves, open road conditions	39
Figure 2-8 Graded and usable shoulders	44
Figure 2-9 Typical cross section, normal crown	46
Figure 2-10 Clear zone distance curves	47
Figure 2-11 Comparative risk warrants for embankments	49
Figure 2-12 Highways in cut sections	51
Figure 2-13 Basic section costs for passenger cars on two-lane highways	55
Figure 3-1 Outline of steps in determining a potential horizontal alignment	62
Figure 3-2 Location of end points of proposed highway	65
Figure 3-3A Plan of Route 1	67
Figure 3-3B Profile along Route 1	67
Figure 3-4 Initial development sketches of Routes 2 and 3 resulting from	
examination of Route 1	69
Figure 3-5A Plan of Route 2	70
Figure 3-5B Profile along Route 2	70

Figure 3-6A Plan of Route 3	72
Figure 3-6B Profile along Route 3	72
Figure 3-7 Oblique view of alternative Routes 1, 2, and 3	74
Figure 3-8 Example of where a bridge may help to improve geometrics	76
Figure 3-9 Examples of drainage features-diagrammatic	77
Figure 3-10 Example of wetland locations and categories	80
Figure 3-11 Example of wetland detailed description	81
Figure 3-12 Examples of selected steps in automated route design process	83
Figure 4-1 Location of proposed highway	91
Figure 4-2 Background and specifications – I	93
Figure 4-3 Background and specifications – II	94
Figure 4-4 Contiguous environmental features	96
Figure 4-5 Alternative Routes A and B	97
Figure 4-6 Preliminary profiles, Routes A and B	98
Figure 4-7 Screening alternatives	100
Figure 4-8 Horizontal alignment - proposed centerline	101
Figure 4-9 Horizontal alignment - summary and traverse	102
Figure 4-10 Profile summary and computations	104
Figure 4-11 Example of horizontal curve computations	106
Figure 4-12 Example of vertical curve computations	107
Figure 4-13 Horizontal and vertical alignment coordination	108
Figure 4-14 Typical cross sections for project	109
Figure 4-15 Cross sections, sheet 1/4	110
Figure 4-16 Cross sections, sheet 2/4	111
Figure 4-17 Cross sections, sheet 3/4	112
Figure 4-18 Cross sections, sheet 4/4	113
Figure 4-19 Earthworks quantities and mass haul	115
Figure 4-20 Major drainage features	117
Figure 4-21 Ditch design check	119
Figure 4-22 Ditch design data	120
Figure 4-23 Preliminary cost estimate	122
Figure 4-24 Summary of potential environmental concerns	124
Figure 4-25 Economic cost analysis worksheet	127
Figure 4-26 Passenger car operating costs on 2-lane highways	128
Figure 4-27 Summary of technical features	130
Figure 5-1(A) Alternative project route end points	133
Figure 5-1(B) Alternative project route end points	134
Figure 5-2	135
Figure 5-3 Design project - report format	137

TABLES

Table 1-1 Example of highway design process steps	14
Table 2-1 Traffic elements and their relation - rural highways	21
Table 2-2 Guide for selection of design levels of service	22
Table 2-3 Minimum turning radii of design vehicles	22
Table 2-4 Minimum design speeds (rural conditions)	26
Table 2-5 Maximum grades	26
Table 2-6 Minimum width of traveled way and graded shoulders	26
Table 2-7 Stopping sight distance (wet pavements)	28
Table 2-8 Maximum degree of curve and minimum radius determined for	
limiting values of e and f, rural highways and high-speed urban streets	30
Table 2-9 Length required for superelevation runoff - two-lane pavements	33
Table 2-1 0 Relationship of design speed to maximum relative profile gradients	33
Table 2-11 Calculated and design values for pavement widening on open	
highway curves (two-lane pavements, one-way or two-way)	34
Table 2-12 General controls for horizontal alignment	36
Table 2-13 General controls for vertical alignment	41
Table 2-14 Minimum edge-of-pavement designs for turns at intersections	53
Table 2-15 Examples of state and federal laws and requirements related	
to highway design	57
Table 3-1 Screening evaluation of alternatives	73
Table 5-1 Project descriptions and parameters	132
Table 5-2 Check list of project contents	141

Preface

The main purpose of this book is to assist in consolidating the many elements of highway design and linking them into a route selection and geometric design project. This second edition is based upon metric units of measurement. In addition, it enlarges upon environmental reporting concerns and presents a discussion of economic cost analysis and its application. The latter will assist in comparing different projects conducted in a class setting, and is intended to add further realism to the overall design and evaluation process. Also added are the main features of route selection and design aided by digital terrain and computerized alignment modeling. This latter approach is becoming more prominent as its cost is reduced and experience is gained in its use by highway agencies and consulting firms.

Intended for use by senior undergraduate students in civil engineering and graduate students who require a basic highway design course, the book is structured to complement highway design theory described in existing texts and design guidelines, and to supplement these in a typical highway design course. The book is also intended to assist an introductory short-course on geometric design for practicing engineers. It is assumed that the student has a working knowledge of geometry, trigonometry, soil mechanics, hydraulics, and surveying principles. These are subjects which most undergraduate civil engineering students have studied during or before their senior year.

Understanding the interrelationship between geometric design and topography is a fundamental requirement in highway engineering, for these essential elements establish the horizontal and vertical alignment of the centerline, upon which all other details of the highway and the right-of-way depend. The principles remain the same for highways ranging from a simple, two-lane, local road to a multi-lane freeway. Also, the design of any highway route is a unique undertaking in that detailed features of the terrain and other environmental conditions invariably differ; only by working through a practical example which contains the essential design elements can the student be sure of understanding the problems involved, and of developing realistic solutions.

The examples illustrate the process of conducting a preliminary highway design based upon the geometric design controls, topographic maps, and, where possible, aerial photography. Thus, the examples provide exposure to and some practice in determining