On Graph-Based Knowledge Representation in Design

Adam Borkowski', Ewa Grabska® and Janusz Szuba’

Summary

Based upon the graph-oriented knowledge representation two problems are
considered: transforming functional requirements into layouts of houses and
searching for optimum topology of trusses. It is shown that both problems can be
conveniently formulated and then efficiently solved be means of specialized graph
transformation rules.

Keywords: graph transformations, knowledge representation, floor layout,
optimum topology

Introduction

Prior to designing any artifact one has to develop clear understanding of the
purpose that the object should serve. In software engineering this understanding is
achieved by working out a detailed description of functional requirements to be
met by the designed system. The use case diagrams and the activity diagrams
provided by the Unified Modeling Language (UML) proved to be very helpful in
accomplishing the specification of system’s functionality. In the first part of the
paper we show how the same tools can be applied for describing the functionality
of a building.

The main aim of this project is to create the system aiding the early phase
of architectural designing and to accomplish that by means of graph
transformations. Contrary to conventional expert systems proposed previously in
this domain (Flemming et at, 1999) our system can be seen as a knowledge-based
front-end of a CAD-tool. We restrict our consideration to the rather simple

! Professor, Institute of Fundamental Technological Research, Polish Academy of
Sciences, Warsaw, Poland, abork@ippt.gov.pl

? Dr. Habil,, Institute of Computer Science, Jagiellonian University, Cracow, Poland, ui-
grabsk@cyf-kr.edu.pl

* Doctoral Candidate, Institute of Fundamental Technological Research, Polish Academy
of Sciences, Warsaw, Poland, jszuba@ippt.gov.pl

Copyright ASCE 2004 This is a preview. Click here to purchase the full publication. brmation Technology 2002



https://www.civilenghub.com/ASCE/137334463/Computing-in-Civil-Engineering-2002?src=spdf

2 COMPUTING IN CIVIL ENGINEERING

example of designing a single-store family house but the methodology remains
valid for designing other types of buildings. The system, which we called
GraCAD, should help the architect to create designs that fulfill specified
requirements. The GraCAD is integrated with the commercial program for
architects (ArchiCAD, 2000).. The graph rewrite tool that we use is the
PROGRES developed at the RWTH Aachen (Schiirr, Winter and Ziindorf, 1995).

A special form of graph-based representation has been developed by the
second author (Grabska, 1994). It turned out that by introducing an additional
functionality graph into the original model one can conveniently reason about
conceptual solutions for the designed object. The functionality analysis of as the
starting point of the conceptual design has been proposed by several researchers
(Borkowski, Grabska and Hliniak, 1999), (Cole, 1998).

In the second part of the paper we consider the topological optimization of
structural systems. An exhaustive presentation of the state-of-art in the topological
optimization can be found in (Kirsch, 1995).

Reasoning About Function

Our proposal amounts to giving the designer a computer-based tool that allows
him to reason about functional requirements and to transform them into the
structural scheme of the designed object. In order to achieve that, we distinguish
four phases of the design process:

1) Specifying functional requirements for the designed object.

2) Transforming them into the structure of the object.

3) Visualising the object.

4) Working out the detailed design.
We propose the initial two steps to be graph-based. Firstly, the designer takes the
list of required functions and constructs a functionality graph. The nodes of this
graph correspond to the functions that the considered artifact has to fulfill. The
edges connecting the nodes depict functional relationships.

In the second phase the functionality graph is mapped into a structural
graph of the object. The nodes of the structural graph correspond to the
components of the object; the edges represent relations between the components.
Thus, the structural graph describes a physical decomposition of the artifact. By
assigning the functions to the components one aims at satisfying all the functional
requirements by the object viewed as an assembly of its components. The
transition from the functionality graph to the structural graph is neither unique nor
straightforward. Hence, the designer needs usually several iterative loops over the
steps 1, 2 before the satisfactory solution is found.

The step 3 — the visualization of the object described by the structural graph — is
performed automatically. Our system generates the floor layout of the building in
the format accepted by the ArchiCAD. This system allows the user to visualize the
building in 2D or 3D mode, to make any desired cross-section of the building and
to assign its components the elements of the library of standard units, like the
doors, the windows, etc. Usually the visualization reveals several drawbacks of
the designed object. Such errors are removed by revisiting the steps 1 and 2. After

Copyright ASCE 2004 This is a preview. Click here to purchase the full publication. brmation Technology 2002



https://www.civilenghub.com/ASCE/137334463/Computing-in-Civil-Engineering-2002?src=spdf

COMPUTING IN CIVIL ENGINEERING 3

several loops the final solution is found and the project enters the step 4. The
detailed design is accomplished in usual manner by means of the CAD-tool.

The advantages of using graph-based representation during the steps 1, 2
seem to be obvious. The designer is encouraged to think firstly in the abstract
terms of functions and their relations. After the functionality graph is established,
the designer tries to decompose the object into physical units assigning particular
functions to them. The entire process is performed graphically by means of the
editor that allows the designer to manipulate graphs conveniently.

Let us clarify the idea of our approach on an example of designing a
single-family house. The user of our systems begins with defining functional
requirements. This is accomplished by means of a convenient editor (Figure 1).
The left part of it contains the list of functions arranged in a tree. The right part
shows the functionality graph. The user can add or delete nodes representing
functions, as well as perform editing of the edges representing functional
relations.

In the second step the structural graph of the building is generated. The

nodes of this graph represent the rooms of the house; the edges represent
accessibility relations between rooms. After the structural graph has been
generated, the designer evaluates it. Note that at this stage the level of abstraction
remains high: the geometry is still irrelevant, what matters is the assignment of
functions to particular rooms.
If the evaluation falls negative, the designer can modify the structure. In terms of
graphs this means adding or deleting a node, adding or deleting an edge, merging
two nodes into one, splitting a node into two, changing the type of node or
changing the label of edge. Given the editor the architect is not bothered by the
technicalities of the graph theory. Architects are trained in visual reasoning.
Therefore, they find this tool quite intuitive.

Generating Floor Layout

After the designer finds the object structure acceptable, the layout of the house is
automatically generated and displayed by the ArchiCAD system. The floor layout
generator scans the structural graph of the house node by node and creates
“embryos” of rooms: the objects that have already walls but are of square shape
with minimum allowable area. Such embryos are placed inside the preliminary
contour of the floor according to heuristic rules. Then they are allowed to expand
until there is no free space between adjacent rooms. The preliminary outer contour
is allowed to adjust itself in order to accommodate all necessary rooms.

The initial placement of room embryos follows three predefined patterns.
The choice of pattern depends upon the global area of the house requested by the
client. After the position and the size of each room have been found, the generator
begins to place doors and wall openings. These elements are located according to
the accessibility edges given in the structural graph. Additional requirements
coming from the codes of practice are also taken into account.

Figure 2 shows two alternative floor layouts obtained by means of the
prototype generator. Both solutions were derived according to the “small house”

Copyright ASCE 2004 This is a preview. Click here to purchase the full publication. brmation Technology 2002



https://www.civilenghub.com/ASCE/137334463/Computing-in-Civil-Engineering-2002?src=spdf

4 COMPUTING IN CIVIL ENGINEERING

pattern. They differ in the number of bedrooms governed by the number of
inhabitants and in the position of the main entrance.

Figure 1: Editor of functionality graph.

Specifying Project

The graph rewrite system PROGRES (Schiirr, Winter and Ziindorf, 1995) serves
in our prototype the following purposes:

1) It provides access to the domain knowledge stored in the form of graph
grammar. At present this grammar encompasses single-family houses
but the knowledge base can be easily extended to cover other domains.

2) It provides means of constructing graphs that describe the currently
designed object.

3) It allows the user to trigger rules that check whether the current design
fulfils architectural norms and other constraints.

2) b)

Wi

Livingroom
0 21T f041r

< T
L

wokar

wo
wesse
S,

wr

Kichan
1wrare c’

|

\J

Figure 2: Two alternative floor layouts.

Copyright ASCE 2004 This is a preview. Click here to purchase the full publication. brmation Technology 2002



https://www.civilenghub.com/ASCE/137334463/Computing-in-Civil-Engineering-2002?src=spdf

COMPUTING IN CIVIL ENGINEERING 5

In our system every operation during specification of functional requirements or
creating the prototype design is invoking the PROGRES graph transformation that
modifies the graph of the house structure. For example, assigning a function to the
room is equivalent to invoking the following PROGRESS rule:

on { roomid : giring ; areald : gtring)
[1:1) =
1 : RoOM I*z : AREA I H

7 Je—{~7 ]}

condition “1.1Id = roomld;
*2.1d = areald;
end:

Note that in ArchiCAD the layout of the building is coded in terms of walls,
whereas the main building block in our system is a room. Therefore, seamless
transformation between both formats of knowledge representation must be granted
for the user. Each time when the user inserts a room into the prototype design
window the system creates four instances of the class Wall. Their attributes
contain data defining the location of each wall in the global co-ordinate system.
The relation between the room and its walls is established by connecting Wall
nodes with the Room node by means of the contains edges. The graph of house
structure created this way is passed to the RoomAdjuster and to the rule checkers.
The latter are implemented as graph transformation rules in PROGRESS.

Reasoning About Topology

Let us turn our attention now to the optimum design of skeletal structures.
Conventional optimization assumes that the layout, i.e. the number of nodes, their
positions as well as the connections between the nodes, is given. Selecting the best
values for the attributes of structural components leads usually to the gain in cost
or weight of the order of 5 to 10 %. On the other hand, finding the most favorable
configuration of the structure may diminish the same cost indicator by 20 or 30 %.

The above-mentioned circumstance inspired many researchers to look for a
way of finding the best structural layout (topology) automatically. In particular,
the sensitivity analysis developed during last decades seemed, at the first glance,
to enable the search for optimum topology in a gradient-based manner.
Unfortunately, this way turned out to be much more difficult than expected
(Sokolowski and Zochowski, 1999). The main obstacle in calculating sensitivities
with respect to topological changes is the non-smooth nature of the problem.
Introducing a new structural element or changing the way in which elements are
connected brings abrupt changes in the cost function.

The first attempts to employ genetic optimizers that require no sensitivity
data were quite promising (Achtziger, 1995), (Eschenauer, Kobelev and
Schumacher, 1994). In the second part pf this paper we report preliminary results

Copyright ASCE 2004 This is a preview. Click here to purchase the full publication. brmation Technology 2002



https://www.civilenghub.com/ASCE/137334463/Computing-in-Civil-Engineering-2002?src=spdf

6 COMPUTING IN CIVIL ENGINEERING

on developing the graph-based methodology for the topological optimization. A
prerequisite for applying genetic search for the considered problem was an
introduction of the novel definitions of the crossover operator and the mutation
operator (Hliniak and Strug, 2000). The new operators work on graphs and take
into account constraints introduced by dependency on the context. This allows
siblings to inherit certain semantics from parents. As a result, the search is less
burdened by meaningless solutions.

Structural optimum design can be considered at three levels: 1) the
component level; 2) the shape level; 3) the topology level. These levels build a
hierarchical ontology leading towards higher abstraction. Strictly speaking, all
three levels are mutually coupled but a brute force attempt to solve the problem in
one step would be too expensive computationally. Therefore, in practice the
coupling between levels is either completely or partially neglected. Solutions
obtained this way are sub-optimal as compared to the exact solution.

For the sake of simplicity we prefer to illustrate all notions on planar
trusses since generalization to the 3D-space and to the systems in bending is
straightforward. Let the optimized structure consist of m elements (bars)
connected at n nodes. Following the object-oriented methodology we represent the
properties of an object by its attributes. The attributes of a generic element will be
its length, cross-section, material, etc. The main attributes of a generic node are its
co-ordinates in the global reference frame.

Instead of treating each attribute of an individual structural element as an
independent design variable, it is preferable to split the entire set M of structural
members into relatively small number of subsets M grouping homogeneous
elements. The attributes of the &-th group are taken then as the design variables at
the component level of optimum design. Similar reasoning leads to imposing
internal structure on the entire set % of nodes. Firstly, this set is divided into the
subsets MNix and N,r containing the nodes that are fixed and variable, respectively,
with respect to their position. As a rule, Mgy includes the supports of the structure
but the points of loading can also enter this subset.

At the second level of optimum design we are looking for the optimum
shape of the structure. Let S be a curve describing such shape. This curve allows
us to partition % into the subset ey of external, i.e. lying on S, nodes and the
subset %N of internal nodes. A common assumption adopted in the shape
optimization is W= @ which implies Nex= Mix W Mar - Describing parts of S by
Bsplines or NURBS allows us to diminish further the dimension of the shape
optimization problem.

Both the component optimization and the shape optimization are well
represented in the literature on optimum structural design. Let us treat them as
being satisfactorily solved and let us confine our attention to the highest level of
abstraction, namely, to the problem of topological optimization. Let ® be a set of
primitives — building blocks that constitute our structure. We understand then as
topology a graph 7 describing connections between primitives. A brute force
approach would be to take
®= M and to look for T, Note that in order to evaluate topology in terms of the
structural weight one has to solve both lower level problems: a) find optimal

Copyright ASCE 2004 This is a preview. Click here to purchase the full publication. brmation Technology 2002



https://www.civilenghub.com/ASCE/137334463/Computing-in-Civil-Engineering-2002?src=spdf

COMPUTING IN CIVIL ENGINEERING 7

positions for nodes; b) find optimal attributes for components. We are looking at
present for reasonable means of decoupling the above-mentioned sub-problems
since otherwise the computational burden is too high.

It seems, however, that better results could be obtained if certain meta-
knowledge is applied prior to starting the topological optimization. Structures
used in practice exhibit substantial regularity: they are made of a finite number of
topologically identical units - panels. Thinking in terms of panels reduces the
dimension of the search space but finding the optimum topology still remains non-
trivial task. The connectivity graph C applies now for panels. Even in the case of
the popular cantilever truss principally different solutions are possible. Figure 3.a
shows a conventional linear sequence of panels. The well known analytical
solution found by Michell is depicted in Figure 3.b. This topology consists of
three levels. At the highest level the “onion” type structure of the layers 4, B, C
and D is seen. Each of those layers is subdivided into the panels 0, 1, 2, I at the
intermediate level. The lowest level corresponds to the triangles of the type shown
in Figure 4.a that are substructures of individual panels.

Searching For Solution

In our system a CP-graph is used as a genotype and a realization scheme serves as
means for transforming it into a phenotype. When a crossover is performed on two
graphs G; and G the sub graphs g; and g,, respectively, are selected in these
graphs. Then each sub graph is removed from a parent graph and put into the
sibling graph. As a result, two new topological solutions are generated. However,
there usually exist edges connecting nodes belonging to a selected sub graph with
nodes not belonging to it. Such edges are called embedding of a sub graph. Hence,
removing a sub graph from a graph and putting it into another one requires a
method allowing for a proper reconnection of these edges. The underlying idea is
that all edges should be re- connected to similar nodes they were connected to in
the graph from which they were removed. There is probably more than one
possibility of defining which nodes are similar. In this paper two nodes are said to
be similar if they have identical labels. More formally a crossover operator is
defined as a 6-tuple (Gy, Ga, g1, g2, T, U), where G, Gs, g, £ are hierarchical
graphs and their sub graphs respectively. The crucial elements of this operator are
T and U that are called embedding transformations. They describe how edges of
the embedding are to be re-connected. Embedding transformations are sets of
pairs of the form (b, 5°), where b denotes a bond to which an edge was connected
originally and &’ — the one to which it will be re-connected.

It is important to notice, however, that the graphs to be crossed-over and
their respective sub graphs are selected during the execution of the genetic
algorithm. Therefore, the embedding transformations can not be defined a priori
as it is done in graph grammars (Rozenberg, 1997). The most difficult problem is
to find a method allowing these transformations to be established on-fly. We
developed an algorithm that automatically generates the transformations 7 and U
for any given two graphs and their sub graphs.

The mutation operator can be relatively easily defined for the graph-based
representation. We consider changing at random the values of attributes of a

Copyright ASCE 2004 This is a preview. Click here to purchase the full publication. brmation Technology 2002



https://www.civilenghub.com/ASCE/137334463/Computing-in-Civil-Engineering-2002?src=spdf

8 COMPUTING IN CIVIL ENGINEERING

single node (local mutation), changing them for all nodes (global mutation),
removing nodes or inserting them. So, while crossover allows us to generate
artifacts being combinations of previously existing designs, mutations may
introduce wholly new elements into the object being designed. Thus, they produce
layouts that differ from the initial ones not only in sense of geometrical properties
(like position) but also by structure (i.e. connections).

a)

Figure 3: Alternative meta-level topologies for cantilever truss:
a) linear solution; b) Michell’s solution.

Conclusions

The interviews with designers confirm that an add-on to CAD-tool aiding the
conceptual phase of design is worth developing. It increases the designer’s
productivity, shortens the way from the talk with the client to the prototype
design, helps the designer to operate on the abstract conceptual level, facilitates
the communication with the investor. The experience gained so far suggests that it
is possible to hide the formalism of graph-oriented language from the user
allowing him or her to work comfortably at the level of graphical interface.
Further work has to be done in order to include more realistic design constraints
and to enhance the power of the generative part of the system.

Our system for topological optimization is still under development. The
results of numerical experiments will be presented at the workshop.
Acknowledgements

Copyright ASCE 2004 This is a preview. Click here to purchase the full publication. brmation Technology 2002



https://www.civilenghub.com/ASCE/137334463/Computing-in-Civil-Engineering-2002?src=spdf

COMPUTING IN CIVIL ENGINEERING 9

This project was partly supported by the Polish State Committee of Scientific
Research (grant # 8TO7A 01621) and the German Federal Ministry of Education
and Research (joint Polish-German project “Graph-based tools for conceptual
design in Civil Engineering”) which is gratefully acknowledged.

References

Achtziger, W. (1995). “Multiplay load truss optimisation: properties of min-max
compliance and two non-smooth approaches”. In: Proc. of the First World
Congress of Structural and Multidisciplinary Optimization, Pergamon Press,
Oxford, 123-128.

Borkowski, A., Grabska, E. and Hliniak, G. (1999). “Function-structure computer-
aided design model”, Machine GRAPHICS &VISION, 9, 367-383.

Cole, E. L. Jr. (1998). “Functional analysis: a system conceptual design tool”,
IEEE Trans. on Aerospace & Electronic Systems, 34 (2), 354-365.

Eschenauer, H. A., Kobelev, V. V. and Schumacher, A. (1994). “Bubble method
for topology and shape optimization of structure”. J. of Structural Optimization, 8,
42-51.

Flemming, U., Coyone, R., Gavin, T., and Rychter M. (1999). “A generative
expert system for the design of building layouts — version 2”. In: B. Topping
(Ed.), Artificial Intelligence in Engineering Design, Computational Mechanics
Publications, Southampton, 445-464.

Grabska, E. (1994). “Graphs and designing”. In: H. J. Schneider and H. Ehrig
(Eds.), Graph Transformations in Computer Science, LNCS 776, Springer-Verlag,
Berlin, 188-203.

Hliniak, G. and Strug, B. (2000). “Graph grammars and evolutionary methods in
graphic design”. Machine GRAPHICS & VISION, 9, 1 (2), 5-13.

Kirsch, U. (1995). “Reduction and expansion processes in topology optimization”.
In: Proc. of the First World Congress of Structural and Multidisciplinary
Optimisation, Pergamon Press, Oxford, 95-102.

Rozenberg, G. (Ed.). (1997). Handbook of Graph Grammars and Computing by
Graph Transformation, World Science, Singapore.

Schiirr, A., Winter, A. and Ziindorf A. (1995). “Graph grammar engineering with
PROGRESS”. In: W. Schifer, P. Botella (Eds.), Proc. 5th European Software
Engineering Conference (ESEC’95), LNCS 989, Springer-Verlag, Berlin, 219-
234.

Copyright ASCE 2004 This is a preview. Click here to purchase the full publication. brmation Technology 2002



https://www.civilenghub.com/ASCE/137334463/Computing-in-Civil-Engineering-2002?src=spdf

10

COMPUTING IN CIVIL ENGINEERING

Sokotowski, J. and Zochowski, A. (1999). ,,0n topological derivative in shape
optimization”. SIAM Journal on Control and Optimisation, 37, No. 4, 1251-1272.

Copyright ASCE 2004

This is a preview. Click here to purchase the full publication.

brmation Technology 2002



https://www.civilenghub.com/ASCE/137334463/Computing-in-Civil-Engineering-2002?src=spdf

	On Graph-Based Knowledge Representation in Design
	Teaching Agents How to Solve Design Problems: A Mixed Initiative Learning Strategy

