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Preface 
 

 
Interest and use of probabilistic methods and risk assessment tools in geotechnical engineering has grown 

rapidly in recent years. The natural variability of soil and rock properties, combined with a frequent lack 

of high quality site data, makes a probabilistic approach to geotechnical design a logical and scientific 

way of managing both technical and economic risk. The burgeoning field of geotechnical risk assessment 

is evidenced by numerous publications, textbooks, dedicated journals and sessions at general geotechnical 

conferences. Risk assessments are increasingly becoming a requirement in many large engineering 

construction projects. Probabilistic methods are also recognized in design codes as a way of delivering 

reasonable load and resistance factors (LRFD) to target allowable risk levels in geotechnical design. 

 

This Geotechnical Special Publication (GSP), coming out of the Geo-Risk 2017 specialty conference held 

in Denver, Colorado from June 4-7, 2017, presents eight outstanding contributions from the keynote 

speakers. Four of the contributions are from practitioners and the other four are from academics, but they 

are all motivated by a desire to promote the use of risk assessment and probabilistic methodologies in 

geotechnical engineering practice. Honor Lectures are presented by Greg Baecher (Suzanne Lacasse 

Lecturer) on Bayesian thinking in geotechnical engineering and Gordon Fenton (Wilson Tang Lecturer) 

on future directions in reliability based design. The reliability-based design theme is continued by Dennis 

Becker who includes discussion of risk management, and Brian Simpson, who  focuses on aspects of 

Eurocode 7 and the rapidly growing importance of robustness in engineering design.  The evolution and 

importance of risk assessment tools in dam safety is covered in lectures by John France and Jennifer 

Williams, and Steven Vick. The challenges of liquefaction modeling and the associated risks of problems 

due to instability and deformations are covered in lectures by Hsein Juang and Armin Stuedlein. 

 

These contributions to the use of risk assessment methodologies in geotechnical practice are very timely, 

and will provide a valuable and lasting reference for practitioners and academics alike. 

 

All the papers in this GSP went through a rigorous review process. The contributions of the reviewers are 

much appreciated. 
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Bayesian Thinking in Geotechnics 
 

Gregory B. Baecher, Ph.D., M.ASCE
1
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Abstract 

 

The statistics course most of us took in college introduced a peculiar and narrow species of the 

subject. Indeed, that species of statistics�usually called, Relative Frequentist theory�is not of 

much use in grappling with the problems geotechnical engineers routinely face. The sampling 

theory approach to statistics that arose in the early 20
th

 C. has to do with natural variations within 

well-defined populations. It has to do with frequencies like the flipping of a coin. Geotechnical 

engineers, in contrast, deal with uncertainties associated with limited knowledge. They have to 

do with the probabilities of unique situations. These uncertainties are not amenable to Frequentist 

thinking; they require Bayesian thinking. Bayesian thinking is that of judgment and belief. It 

leads to remarkably strong inferences from even sparse data. Most geotechnical engineers are in-

tuitive Bayesians whether they know it or not, and have much to gain from a more formal under-

standing of the logic behind these straightforward and relatively simple methods. 

 

BAYESIAN THINKING 

 

Most geotechnical engineers are intuitive Bayesians. Practical examples of Bayesian thinking in 

site characterization, dam safety, data analysis, and reliability are common in practice; and the 

emblematic observational approach of Terzaghi is a pure Bayesian concept although in a quali-

tative form (Lacasse 2016). 

The statistics course one took in college most likely introduced a peculiar and narrow 

form of statistics, generally known as Relative Frequentist theory or Sampling Theory statistics. 

In the way normal statistics courses are taught, one is led to believe that this is all there is to sta-

tistics. That is not the case. As one of the reviewers of this paper said, it�s not your fault if you 

haven�t thought about Bayesian methods until now; and it�s not too late. 

This traditional frequentist form of statistical thinking is not particularly useful except in 

narrowly defined problems of the sort one finds in big science, like medical trials, or in sociolog-

ical surveys like the US Census. It is tailored to problems for which data have been acquired 

through a carefully planned and randomized set of trials. It is tailored to aleatory uncertainties, 

that is, uncertainty dealing with variations in nature. This almost never describes the problems a 

normal person faces, and especially not geotechnical engineers. Most geotechnical uncertainties 

are epistemic: they deal with limited knowledge, with uncertainties in the mind not variations in 

nature. 

 

Two concepts of probability. The reason that college statistics courses deal with this peculiar 

form of statistics and not something more useful in daily life has to do with intellectual battles in 

the history of probability, and in how the pedagogy of statistical teaching evolved in the early 

20
th

C. Even though concepts of uncertainty, inference, and induction arose in antiquity, what we 
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think of as modern probability theory, at least its mathematical foundations, arose only around 

1654. Hacking (1975) and Bernstein (1996) trace this history.  

From that time, two concepts of probability evolved in parallel. These deal with different 

problems, and while they have evolved to use the same mathematical theory, and while they are 

commonly confused with one another, in fact they are philosophically distinct. One concept, the 

one taught in undergraduate courses, deals with the relative frequency with which particular 

events occur in a long series of similar trials. For example, if you roll a pair of dice a thousand 

times, �snake eyes� (double-1) will occur in about 8.3% of the tosses. This is the sort of proba-

bility that is involved with large clinical trials. One exposes 1000 subjects to a test drug, and 

1000 subjects to a placebo, and then compares the frequency with which particular outcomes oc-

cur in each group. 

The other concept of probability deals with degrees of belief that one should rationally 

hold in the likely outcome of some experiment or in the truth of a proposition. This species of 

statistics has nothing to do with frequencies in long series of similar trials, but rather with how 

willing one is to make decisions or to take action when faced with uncertainties. For example, 

frequency statistics might be used to describe the rates of false positive or false negative results 

when a medical test is applied to a large number of subjects; but the probability that you as a 

unique individual are sick if a diagnostic test comes back positive is not a matter of frequencies, 

it is a matter of one unique individual, namely, you. You are either sick or well. Probability in 

this case is a matter of the degree of belief about which of those two conditions you think ob-

tains. Vick (2002) interprets this theory of degrees-of-belief as a formalization of �engineering 

judgment.� 

 

Scope of this paper. This paper focusses on inferences which at first glance seem difficult or 

impossible to make�and indeed they are, using frequentist thinking. But they are easy when 

viewed through the lens of Bayesian thinking. Bayesian methods have been used across the spec-

trum of geotechnical applications since the 1970�s, as reflected in the early work of Tang 

(Lacasse et al. 2013), Wu (2011), Einstein (Einstein et al. 1978), Marr (2011), and many others. 

These methods have revolutionized many fields of engineering and continue to do so (McGrayne 

2012). �Clippy� the annoying Microsoft self-help wizard was a Bayesian app. Spam filtering of 

your email inbox is, too. The Enigma Code of the German Kriegsmarine was broken using 

Bayesian methods at Bletchley Park. And the wreckage of Air France flight 447 was found using 

a Bayesian search algorithm. Recent reviews of the use of Bayesian methods in geotechnical en-

gineering have been provided by Yu Wang (2016), Zhang (2016), and Juang and Zhang (2017). 

For reasons of space and to avoid complicating the �message,� advanced topics in Bayesian 

methods such as belief nets and Markov-chain Monte-Carlo are not discussed here.  

  

LEARNING FROM EXPERIENCE 

 

The application of statistics to practical problems is of two sorts. On the one hand, we use statis-

tics to describe the variability of data using summaries such as measures of central tendency and 

spread, or frequency distributions such as histograms or probability density functions. On the 

other hand, we use statistics to infer probabilities over properties of a population that we have 

not observed and based on a limited sample that we have observed. It is this latter meaning of 

statistics that we deal with here. It is the inductive use of statistics, which in the 19
th

 C. was 

called inverse reasoning. 
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Bayes' rule. Bayes� Rule tells us that the weight of evidence in observations is wholly contained 

in the Likelihood Function, that is, in the conditional probability of the observations, given the 

true state of nature (see Hacking 2001 for a comprehensible introduction). Statisticians might call 

the true state of nature, the hypothesis, thus, 

 

(ܽݐܽ݀|ܪ)ܲ  = ܰ × (ܪ)ܲ × (1) (ܪ|ܽݐܽ݀)ܲ

in which H=the hypothesis is true, ܲ(ܪ)=the (prior) probability of the hypothesis being true be-

fore seeing the data, ܲ(݀ܽܪ|ܽݐ)=the probability of the observed data were the hypothesis true, ܲ(ܽݐܽ݀|ܪ)=the (posterior) probability of the hypothesis being true, and N=a normalizing con-

stant.  

The term, ܲ(݀ܽܪ|ܽݐ) is called, the Likelihood, 

 

ݎ݂	ܪ	݂	݀ℎ݈݅݁݇݅ܮ  ℎ݁ݐ ݀݁ݒݎ݁ݏܾ ܽݐܽ݀ = ܲ( ܽݐܽ݀ (2) (	ܪ	|

The Likelihood might be thought of as the degree of plausibility of the data in light of the hy-

pothesis (Schweckendiek 2016). In the Bayesian literature, the Likelihood is sometimes written 

as, (ܽݐܽ݀|ܪ)ܮ (O�Hagan and Forster 2004). 

The normalizing constant in Eq. (1) is just that which makes the sum of the probabilities 

for and against the hypothesis (H) equal 1.0. In practical applications, N is often and most easily 

obtained numerically, but in the simple case above it can be calculated from the Total Probability 

Theorem as, ܰ = 	 (ܪ)ܲ} × (ܪ|ܽݐܽ݀)ܲ + (ഥܪ)ܲ ×  ഥ=the hypothesis isܪ in which ,{	(ഥܪ|ܽݐܽ݀)ܲ

not true.  

Dividing Eq. (1) by its complement for not-H, 

 

 
(ܽݐܽ݀|ഥܪ)ܲ(ܽݐܽ݀|ܪ)ܲ = (ഥܪ)ܲ(ܪ)ܲ × (3) (ഥܪ|ܽݐܽ݀)ܲ(ܪ|ܽݐܽ݀)ܲ

 

The normalizing constant, N, which is same in numerator and denominator, cancels out. In eve-

ry-day English, this reads, �the posterior odds for the hypothesis equals the prior odds times the 

likelihood (LR) ratio.� What one thought before seeing the data is entirely contained in the prior 

odds, while the weight of information in the data is entirely contained in the Likelihood Ratio. 

The Likelihood Ratio is the relation of the Likelihood for a true hypothesis to that for a false hy-

pothesis, ܴܮ =  .(ഥܪ|ܽݐܽ݀)ܲ)/(ܪ|ܽݐܽ݀)ܲ

 

The weight of evidence. The crucial thing about Eq. (3) is the unique role of the Likelihood Ra-

tio. The Likelihood Ratio contains the entire weight of evidence contained in the observations. 

This is true whether there is one observation or a large number, which means that inferences can 

be made even if the data are relatively weak (Jaynes 2003), and sometimes these inferences from 

weak data can actually be relatively strong (Good 1996).  

Sir Harold Jeffreys (1891-1989), late Professor of Geophysics at Cambridge and ardent 

defender of Bayesianism (although an opponent of continental drift), proposed that this weight of 

evidence�for purposes of testing scientific hypotheses�be characterized as in Table 1. Whether 

one agrees with the verbal descriptions and corresponding LR�s is left to the reader�s judgment. 

In the modern literature, this weight of evidence in the LR is called, the Bayes factor (Kass and 

Raftery 1995). For Millennial readers, the logarithm of the Bayes Factor will be recognized as 
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the decimal version of binary bits of information in the Shannon and Weaver (1949) sense. For 

readers of the author�s age the odds might be compared to bets at the horse track. 

  

Table 1. Qualitative scale for the degree of support provided by evidence (Jeffreys 1998) 

LR = Likelihood Ratio (from-to)  Weight of evidence to support the hypothesis 

1 10  Limited evidence  

10 100  Moderate evidence  

100 1000  Moderately strong evidence  

1000 10,000  Strong evidence  

10,000 ∞  Very strong evidence  

 

SIMPLE BAYESIAN INFERENCE (A/K/A �BAYESIAN UPDATING�) 

 

A straightforward but powerful example of simple Bayesian inference is given by the work of 

Chen and Gilbert (2014) on Gulf of Mexico offshore structures. These inferences might be based 

on laboratory tests, in situ measurements, performance data, or even quantified expert opinion. 

This contrasts to an earlier time when such inferences were almost always made using 

Frequentist methods (Lumb 1974). 

Chen and Gilbert use Bayes' Rule to update bias factors in engineering models for pile 

system capacity based on observed performance in Gulf of Mexico hurricanes. The initial work 

included events up to Hurricane Andrew in 1992, and in a subsequent paper up to more recent 

hurricanes between 2004 and 2008 (Chen and Gilbert in press). The analysis addresses model bi-

as in four predictions: wave load, base shear capacity, overturning in clay, and overturning in 

sand. 

The question addressed is, what is the systematic bias in the predictions of the engineer-

ing models being used to forecast pile system capacity, given observations of how the platforms 

performed in various storm events, and given the prior forecasts of how they would perform. Re-

written in the notation of the present paper (O�Hagan and Forster 2004),  

 

(ܽݐܽ݀|ܤ)݂  = ܰ × (ܤ)݂ × (4) (ܤ|ܽݐܽ݀)ܲ

 

in which, f(.) is a probability density function (pdf), B = model bias factor, ݀ܽܽݐ = the observed 

performance of the pile system, and the normalizing constant, N, is that which makes the integral 

over all B equal to 1.0, ܰ = ൛ (ܤ)݂ 	× ஶିஶܤ݀	(ܤ|ܽݐܽ݀)ܲ	 ൟିଵ
 (i.e., the area under ݂(ܽݐܽ݀|ܤ) has 

to be unity for the pdf to be proper). This is simply a restatement of Eq. (1).  

The updated pdf�s of Figure 1 show how the storm loading data led to a re-evaluation of 

the uncertainty in the model bias factors for wave loading and to overturning. The dotted curves 

show the prior pdf�s of model bias. The solid curves show the posterior or �updated� pdf�s. In 

both cases the performance data led to a lowering of the best estimate of model bias and to a 

slight reduction in the uncertainty in the bias. As noted by the authors, however, there is no as-

surance that observed performance will always reduce uncertainty. If the observations are incon-

sistent with what was thought ex ante, the variance of the pdf might, in fact, increase rather than 

decrease. The weight of evidence in the Likelihood Function works both ways, either in favor of 

an hypothesis or opposed to it. Similar applications are provided by Zhang (2004) inferring pile 

capacities based on incomplete load tests, and by Huang, et al. (2016) inferring the reliability of 
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