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Abstract

In this paper, we describe an approach to probabilistic capture zone analysis that
utilizes a stochastic inverse modeling method. Indicator Kriging or transition
probability geostatistics is used to generate N equal probability realizations of
indicator distributions where each realization is conditioned to a set of boreholes or
scatter points. Aquifer properties are then inherited from the indicators, thus resulting
in N different MODFLOW 2000 flow models. Each of these flow models is
subsequently run in inverse mode to optimize the aquifer properties with respect to
observation well and flow data. The end result is N flow solutions, each of which has
an associated global error norm indicating goodness of fit between the computed and
observed values for the optimal set of parameters. After creating a set of flow fields,
we can create probabilistic capture zones using simple advective particle tracking.
The contribution to the probabilistic capture zone from each of the N model runs is
weighted by the error norm for that particular run.

Introduction

Most attempts at probabilistic capture zone delineation utilize a simple Monte Carlo
approach to generate the multiple flow fields. The modeler typically generates a
calibrated flow model and the stochastic runs are made by perturbing the parameters
from a mean value defined by the optimized values from the parameter estimation
process. One of the problems with this approach is that it may give too much weight
to the optimal set of parameter values and it does not include the uncertainty
associated with the aquifer zonation used to define the calibrated flow model.
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Furthermore, many of the model instances generated during the parameter estimation
process may result in a poor fit with the field observation data.

In this paper, we describe an approach to probabilistic capture zone analysis
that utilizes a stochastic inverse modeling method. MODFLOW 2000 is used to
develop the flow fields, and MODPATH particle tracking yields the capture zones.
Indicator Kriging or transition probability geostatistics is used to generate N equal
probability realizations of indicator distributions where each realization is
conditioned to a set of boreholes or scatter points. Aquifer properties are then
inherited from the indicators, resulting in N different MODFLOW 2000 flow models.
Each of these flow models is subsequently run in parameter estimation mode to
optimize the aquifer properties with respect to observation well and flow data. The
end result is N flow solutions, each of which has an associated global error norm
indicating goodness of fit between the computed and observed values for the optimal
set of parameters.

After creating a set of flow fields, we can create probabilistic capture zones
using simple advective particle tracking. Multiple approaches can be used to
generate a 2D capture probability map from a 3D capture zone. A weighting factor
can also be applied to the contribution from each of the N calibrated flow models
where the weighting factor is a function of the error norm.

The problem of stochastic inverse modeling has been studied by several
researchers (Van Leeuwen, et.al., 2000; Guagagnini & Franzetti, 1999; Copty &
Findikakis, 2000; Evers & Lerner, 1998;Varljen & Shafer, 1991; Vassolo et al. 1998).
However, most of these approaches are based on either analytical models or inverse
algorithms applied to polygonal material property zones. Our approach is based on
transition probability geostatistics, thus allowing us to condition the results not only
to head observations, but also to borehole data.

Indicator Simulations

The first step in the capture zone delineation process is to run an indicator simulation
to generate N equally probable realizations of the aquifer heterogeneity. The
indicator simulation approach described in this paper is based on the T-PROGS
software (Carle, 1997a, Walker, 2002). The T-PROGS software utilizes a transition
probability-based geostatistical approach to model spatial variability by 3-D Markov
Chains (Carle & Fogg, 1997), set up indicator cokriging equations (Carle & Fogg,
1996), and formulate the objective function for simulated annealing (Carle, 1997b).

The transition probability approach has several advantages over traditional
indicator kriging methods. First, the transition probability approach considers
asymmetric juxtapositional tendencies, such as fining-upwards sequences. Second,
the transition probability approach has a conceptual framework for incorporating
geologic interpretations into the development of cross-correlated spatial variability.
Furthermore, the transition probability approach does not exclusively rely on
empirical curve fitting to develop the indicator (cross-) variogram model. This is
advantageous because geologic data are typically only adequate to develop a model
of spatial variability in the vertical direction.
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The transition probability approach provides a conceptual framework to
geologic insight into a simple and compact mathematical model, the Markov chain.
This is accomplished by linking fundamental observable attributes — mean lengths,
material proportions, anisotropy, and juxtapositioning — with Markov chain model
parameters.

The first step in performing a transition probability analysis is to compute a
set of transition probability curves as a function of lag distance for each category for
a given sampling interval. Each curve represents the transition probability from
material j to material k. The next step is to develop a Markov Chain model for the
vertical direction that fits the observed vertical transition probability data.
Mathematically, a Markov chain model applied to one-dimensional categorical data
in a direction ¢ assumes a matrix exponential form:

T(hy) = exp(Ryhy) (M

where hy denotes a lag in the direction ¢, and Ry denotes a transition rate matrix

Tie 7 Tie
R¢= : . :
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with entries r, 4 representing the rate of change from category j to category k
(conditional to the presence of j) per unit length in the direction ¢. The transition
rates are adjusted to ensure a good fit between the Markov Chain model and the
observed transition probability data.

Once the Markov chain is developed for the z direction from the borehole
data, a model of spatial variability is developed for the x and y directions. The x, y,
and z Markov chains are converted into a continuous 3D Markov chain using the
MCMOD utility within T-PROGS. In the final phase of setting up a transition
probability analysis using T-PROGS, the modeler creates a grid, specifies the number
of model instances (N), and launches the TSIM utility. The TSIM code uses the 3D
Markov chain to formulate both indicator cokriging equations and an objective
function for simulated annealing. It generates stochastic simulations using a
combination of modified versions of the GSLIB codes SISIM and ANNEAL
(Deutsch & Journel, 1992).

The output from the TSIM code is a set of N arrays of indicators, where each
entry in the arrays is the material id for the corresponding MODFLOW grid cell.
These indicators can be used to define parameter zones in MODFLOW 2000. Each
indicator type becomes a parameter and the hydraulic properties (kp, k,) for each of
the cells are inherited from the list of parameters. A sample MODFLOW grid
generated via transition probability geostatistics is shown in Figure 1.
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Figure 1. MODFLOW grid with hydraulic property data populated by T-PROGS.

Inverse Models

Once the N MODFLOW models are established by the indicator simulation, the next
step is to calibrate each of the models to observed heads and flows. This can be
accomplished using the new PES process in MODFLOW 2000 or using a separate
parameter estimation utility such as PEST or UCODE (Doherty, 2000; Poeter & Hill,
1998). A set of material properties (Kpn, Ky, etc) is associated with each of the
indicators. These properties are marked as parameters and each of the N models is
solved in inverse mode. This is a time-consuming process but it can be done in batch
mode and can be solved using a distributed set of computers. During the inversion
process, some of the models may not converge to a solution. These models are
discarded prior to continuing to the next step.

Capture Zone Delineation

Once the entire set of models is calibrated, the final step is to delineate the
probabilistic capture zones. To develop a capture zone risk map, we generate a
“capture frequency” array with one entry for each cell and we initialize all of the
array values to zero. We then perform a particle tracking analysis with MODPATH
using the results from each of the MODFLOW solutions from the stochastic run. For
each MODPATH run, one or more particles is placed in each cell and is tracked
forward in time. If a particle is captured by a well, we increment the entry in the
capture frequency array corresponding to the cell where the particle originated. We
then divide the number of “captures” for each cell by the total number of MODPATH

Copyright ASCE 2004 This is a preview. Click here to purchase the full publication. foundwater Modeling 2003



https://www.civilenghub.com/ASCE/139535464/Groundwater-Quality-Modeling-and-Management-Under-Uncertainty?src=spdf

GROUNDWATER QUALITY MODELING AND MANAGEMENT 5

runs to give a percentage representing the probability of capture. These percentages
are contoured as a capture zone risk map.

As part of this research, we developed three methods for delineating capture
zone using this basic approach. The three methods differ in terms of how the
particles are distributed throughout the grid prior to the particle tracking step and how
the frequency array is converted to a risk map. The three methods involve placing
particles at the water table, placing particles at the cell centers, and deriving two
dimensional projection views using results from the cell center method.

Water Table Approach. One method for particle placement is to place a
particle at the center of the top-most active cell in each vertical column (i.e., at the
water table). Each particle is then tracked forward in time to determine which
particles reach the well in question. The results from each material set are then
combined to generate a data set of capture probability as described above. The two-
dimensional distribution represents the area at the top of the aquifer that could be
captured by the well. It is important to note that this two-dimensional capture zone
does not describe the total extent of the capture zone in the projected x and y
direction, only the area where the capture zone intersects the water table. In theory,
this capture zone is the most critical capture zone in terms of wellhead protection.
However, it may not be sufficiently conservative since it is highly dependent on
assumption made in developing the model (number of model layers, location of the
well screen, etc.) and it ignores the possibility that contaminants leaking from the
surface downward may come in contact with the full 3D plume by traveling through a
preferential flow path (fissure, abandoned borehole, etc.) that is not represented in the
model.

Three-Dimensional Approach. A more conservative approach is to generate
a full three-dimensional capture zone. This is accomplished by placing the particles
at the center of all cells in the grid. Once again, the particles are tracked forward in
time and a capture probability data set is generated. This yields a three-dimensional
probability array that can be used to develop probability iso-surfaces.

Two-Dimensional Projection. The most conservative method for defining
probabilistic capture zones is to combine aspects from both the cell-centered and
water table approach. A two-dimensional probability array is developed from three-
dimensional capture zones created from each simulation. The capture zone from each
model run represents the projection of the three-dimensional capture zone onto a 2D
surface. In developing a 2D projection from 3D results, we looked at two methods to
“flatten” the data. The first method, called the any point method and viewed as the
most conservative, is to place particles at the cell centers of each active cell in the
grid and track particles forward in time. For a given vertical column of cells, if any
of the particles for any of the cells reached the well in question, then the cell is
marked in the corresponding 2D grid. This means that a column where only one
particle in one cell reached the well would receive the same weight as a column
where almost every particle in every cell reached the well. The second method is
called the maximum probability method. With this method, we weight each vertical
column according to the maximum probability found in any cell in the column.
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Weighting Factor

In all of the capture zone methods, the algorithms used to synthesize the probability
dataset can be weighted using observation data. This makes it possible to give more
weight to model instances with smaller calibration error when calculating the capture
zone probabilities. The weighted head and flow observations can be compared to the
computed values to come up with a global error norm, E, for each model run. This
error norm can be based on the root mean squared (RMS) error, the sum of the
weighted residuals, or any other measure selected by the modeler. The error norm
from each MODFLOW run is used to compute a weight for the given solution using
the following equation:

[ME—Ei}
- sD

W, =a 3)
Where w; is the weight applied to solution i, a is a user-defined factor, ME is the
mean of the error values from all solutions, E, is the error for solution i, and SD is the
standard deviation of error values from all solutions. The weights are also
normalized as follows

W, = i
final — Zwi 4

so that the weights sum to unity. Equation 3 was developed to give the greater
emphasis to the lower error values and to allow the user to control the relative
emphasis given to low vs. high values simply by adjusting the o value. The equation
also avoids problems when one of the error values is zero, since a zero error value
does not result in an infinite weight. We also wanted the equation to scale the
weights according to the data being examined. This is done by subtracting the
individual RMS from the mean error and dividing by the standard deviation.

Equation 3 centers the weights on the mean error. The relative weight given
to values differing from the mean is biased by the factor. This makes it possible to
bias the resulting weight using knowledge of the site and the quality of the
observation data.

Figure 2 shows how the a factor in Equation 3 affects the weight applied to a
given error. An o factor of 1.2 makes the contribution of each RMS almost linear,
whereas an o factor of ten gives most of the weight to the lowest 5-10 percent while
discounting the other error values. We typically use an a value of 2.0.
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Figure 2. Graph showing how different values for the factor a result in different
weights for a given RMS.

Sample Application

The following case study illustrates the stochastic inverse method and the capture
zone delineation techniques described above. The Longhorn Army Ammunition
Plant (LHAAP) is an inactive installation in eastern Texas. Before receiving inactive
status, the LHAAP was responsible for production, distribution, and
decommissioning of munitions that resulted in the contamination of surface and
groundwater systems. This contamination ranges from solvents and oxidizers to
explosives (U.S. Army, 2001). In March of 2001, the United States Army Engineer
Research and Development Center — Waterways Experiment Station (ERDC-WES)
released a study of the groundwater and surface water of the area that attempted to
simulate the hydrogeologic system in the area to predict the transport of chemicals
from the LHAAP site. We selected a small subset of this site to illustrate our new
capture zone delineation method. The local study area contained 74 complex
boreholes with 61different materials described using the Unified Soil Classification
system. We reviewed the borehole data and simplified the material groupings into
four basic materials: clean sand, sand with fines, silt, and clay.
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Figure 3. Conceptual model of the LHAAP site.

We created 100 indicator realizations for a ten layer grid using the T-PROGS
software. The grid had 70 cells in the x direction and 50 cells in the y direction for a
total of 35,000 cells. Once the indicator sets were generated, we constructed the
MODFLOW model based on the conceptual model shown in Figure 3. Because this
is a local scale model, there are parallel flow boundaries on the east and west, and the
remaining north and south boundaries are no-flow. In the center right of the site 1s
one well that is screened in the fifth layer. The top boundary of the MODFLOW grid
was taken from the top of the boreholes. The bottom grid boundary was inferred
from geological estimates provided by the ERDC-WES model documentation. The
remaining layer boundaries were divided so that each layer has an equal thickness.

Basic Stochastic Approach. We first generated a set of capture zones using
a basic stochastic approach without the inversion step. The time it took to complete
all the model runs was approximately 4.25 hours. The capture zone was first
delineated using the water table approach. Four particles were placed in each cell at
the water table boundary and traced forward in time as described above. The results
are shown in Figure 4. Next, we utilized the three dimensional approach where one
particle was placed at the center of each of the cells in the three-dimensional grid and
tracked forward in time. The resulting probabilistic capture zone is shown in
Figure 5. Note that the probability contours in this case are represented as iso-
surfaces corresponding to different levels of capture probability. We then produced a
set of 2D capture zones by projecting the results of the 3D approach using the any
point in column method and the maximum probability in column method
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Figure 4. Capture probability map using Figure 5. Three-dimensional capture
the “water table” approach. probability map.

(Green, 2002). The any point in column method (Figure 6) is the more conservative
of the two methods. With this method, when analyzing the contribution from a single
model to the capture probability for a cell in the 2D grid, the cell is considered to be
part of the capture zone for a well if any of the particles originating in the
corresponding vertical column of cells in the 3D grid is captured by the well. With
the maximum probability in column method (Figure 7), each of the cells in a vertical
column of cells in the 3D grid is analyzed and the probability for the cell with the
maximum probability of capture is assigned to the corresponding cell in the 2D grid.

Figure 6. A 2D projection of a 3D Figure 7. A 2D projection of a 3D
probabilistic capture zone created probabilistic capture created by using
using the any point method. the maximum probability method.
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Stochastic Inverse Approach. Next, we developed capture zones using the
stochastic inverse approach. Inverse modeling is more time intensive than pure
stochastic modeling because when each stochastic simulation is inverted,
MODFLOW can be run two times the number of parameters for each inversion
iteration. To reduce the run time for stochastic inverse modeling of the LHAAP site,
we chose to reduce the number of layers from twenty to one. This was accomplished
by simplifying the boreholes to a single material represented by the predominant
material found in each borehole and re-running T-PROGS with a one-layer grid.
Each instance of the one layer model was run in forward mode to determine if the
model would converge. Each model that converged was then inverted to attempt to
match the heads at 49 observation wells. We inverted the horizontal hydraulic
conductivity for each of the four materials. Running all of the stochastic inverse
simulations took almost three hours. The probabilistic capture zone resulting from
the stochastic inverse solutions is shown in Figure 8. When generating the capture
zone map, we weighted the results from each of the individual models according to
the RMS error norm using Equation 3.

Figure 8. Probabilistic capture zone generated
using the stochastic inverse method.

Conclusion

The tecfmique described in this paper can be used to successfully develop
probabilistic capture zone maps. A unique feature of the stochastic inverse approach
described in this paper is that each of the candidate model solutions used to develop
the capture zones is conditioned to both observed heads/flows and to borehole data.
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