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subset of a residential energy forecasting model.

The presented study extends this line of research by evaluating a more comprehensive
dataset. The dataset includes demographic information, housing unit characteristics (e.g., age,
size, number of rooms), region, and energy consumption (that is broken down into different pre-
defined energy consumption categories) to determine the most discriminative features for
building energy performance prediction to be used in decision-making in energy retrofits.

METHODOLOGY

The proposed methodology for this study is shown in Figure 1. The major steps include data
selection and pre-processing, feature ranking and selection, and the prediction model
development using a machine learning approach. The methods used in each step are described in
details in this section.
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Figure 1. The proposed methodology
Data Collection and Pre-Processing

The U.S. Energy Information Administration (EIA) dataset of 2015 Residential Energy
Consumption Survey (RECS) is used for this study. RECS is a nationally representative sample
of housing units that include their energy consumption information. The raw data included more
than 5,600 data points with more than 700 variables. A pre-processing technique is applied to the
raw noisy data to identify and remove outliers and resolve inconsistencies. The purpose of data
pre-processing is to transform the dataset so that the information content is best exposed to the
data-mining tool. The following methods are used for pre-processing of the data:

Data Selection

A selection process is used to remove data points having missing information about
electricity and gas consumption, along with demographic information, housing unit
characteristics (e.g., age, size, number of rooms), and region, among others. Besides, since about
60% of the data represented the single-family detached houses, only this type of housing units
are considered for data analysis in this study. Such information richness at the micro-level is
appropriate for an empirical analysis of the energy consumption prediction at the household
level.

Outlier Detection and Removal

An outlier is an observation that deviates so much from other observations as to arouse
suspicion that it was generated by a different mechanism. Outliers detection is a task that finds

© ASCE

This is a preview. Click here to purchase the full publication.



https://www.civilenghub.com/ASCE/142149382/Construction-Research-Congress-2020-Computer-Applications?src=spdf

Construction Research Congress 2020 439

objects that are dissimilar or inconsistent regarding the remaining data. Different methods such
as box plot, scatter plot, interquartile range (IQR), or percentage-based methods can be used.
Due to the nature of the data, a 5-95% method is used to detect and remove outliers, in which 5%
of data from the minimum side and 5% data from the maximum side are detected and removed
from the dataset.

The resulting dataset includes 2,084 data points each representing a detached single-family
housing unit that only uses electricity or natural gas as the main energy sources. There are 225
attributes as independent variables for each house, including housing unit characteristics,
location characteristics, and energy consumption information. The ultimate dependent variable to
be predicted in this study is the total energy consumption of units (i.e. the sum of electricity and
natural gas consumption) that can be calculated as the total Btu of consumed energy per year
(TOTALBTU).

Feature Ranking and Selection

Feature selection is a key step in developing shallow machine learning models as it helps the
classifier to be fast, computationally effective, and more accurate (Karabulut et al. 2012). For
this study, a two-step approach is used to select the most important and relevant independent
variables. In the first step, a correlation matrix between the dependent and independent variables
is created. The variables with the p-value less than 0.01 are kept for the next step and the rest are
removed as they do not contribute to statistical significance. In the second step, the list of
correlated variables is reviewed and the most relevant ones are selected. For example, for
lighting energy consumption category, if the variable “Number of inside light bulbs turned on at
least 4 hours a day” exists in the initial list of correlated variables, it is kept in that category.
However, another correlated variable such as “If the electricity is used for space heating” is
removed from the final list of related variables since it was not relevant to the category. This will
ensure there is no multicollinearity in the data.

Prediction Model Development

Different machine learning models are used in this study to find the best energy consumption
predictor including. Regression, Decision Trees, and Neural Networks are used as commonly
used algorithms and Bootstrap Forest and Boosted Trees are also employed as ensemble models.
For the analysis a statistical software called JMP by SAS Institute Inc. is used to train and
validate the models (JMP 2019). JMP software is partly focused on exploratory data analysis and
visualization. It is designed for users to investigate data to learn the unexpected as opposed to
confirming a hypothesis.

To develop the model, the data is divided to 60% training, 20% validation, and 20% testing.
While training and building the models, the required coefficients (based on the selected model)
are learned and fitted to training data. The training aim is to find the best fit model such that cost
function is minimized. The cost function helps in measuring the error. During the training
process, the error between actual and predicted values as well as the cost-function are minimized.
A simple and common cost function is Mean Squared Error (MSE) which is equal to the average
squared difference between an observation’s actual and predicted values. While validating the
models, the dataset is used to minimize overfitting to provide an unbiased evaluation of a model
fit on the training dataset while tuning model hyperparameters. Finally, while testing the model,
the final model fit on the training dataset is evaluated and compared in different models. Finally,
the R-Square is calculated based on the predicted and actual total energy consumption for each
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model, and the machine learning model with the highest R-Square is selected as the best-fit
approach. It is worth mentioning that other methods such as k-fold training and validation to
avoid under- or overfitting can be also used. However, since a variety of models have been
compared here in terms of training and validation R-Squares, it was guaranteed that there is no
under- or overfitting involved.
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Figure 2. Energy consumption percentages

MODEL DEVELOPMENT
Data Summary

For the purpose of this study, the ultimate dependent variable is broken down into six main
energy consumption categories, including Space Heating, Air Conditioning, Water Heating,
Lighting, Appliances and Electronics, and Others. The Others category consists of any other
variable that cannot be categorized in the named categories such as Hot Tube Heater and
Pumping Equipment. Since the category of Appliances and Electronics includes a wide range of
items, it is also broken down into four sub-categories, including fridge, cooking, laundry, and
others. Figure 2 presents the average value of these energy consumption categories in the
analyzed dataset. It also compares the results with the percentages of energy usage in a U.S.
average home by the end-users (EPA, 2009). The average energy consumption of a housing unit
in the dataset is 93.6 MBtu per year; while on average about 50% of that is for space heating
based on both the analyzed data and EPA (2009).
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Table 1. Selected Variables for Each Energy Consumption Category
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Table 1. Selected Variables for Each Energy Consumption Category (Continued)
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Table 1. Selected Variables for Each Energy Consumption Category (Continued)
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Variable Selection

In the next step, the most relevant independent variables are selected, considering each
energy consumption category as a dependent variable. These variables are shown in Table 1. The
selected variables are not only statistically correlated to the energy consumption of each energy
category but also they are filtered by an expert’s insight to make sure they are logically
correlated as well.

As Table 1 illustrates, there are some variables that their value can be changed through
building energy retrofits. Therefore, the model could help understand and predict the impact of
implementing such EEM on the building. The list of variables and impacted energy categories to
be investigated for building energy retrofit are shown in Figure 3.

As mentioned before, four different machine learning models are used in this study to find
the best energy consumption prediction model. Only the selected variables from the previous
section (among all 225 attributes) are used to develop the energy prediction models. The
accuracy and R-square of each developed model are shown in Table 2. The ANN model had the
best performance to be used for building energy consumption prediction (R-Square of 67%). It is
worth mentioning that the low number of data points usually makes ANN not the best predictor.
But since having no under- and over-fitting was ensured through validation R-Square, it was
decided to proceed with ANN. A one hidden layer ANN model is used with ten nodes chosen for
Tanh, Linear, and Gaussian. A Learning rate of 0.1 is used as well as transform covariates and
robust fit for fitting options. Besides, Weight Decay is used as the penalty method.

Table 2. Comparison of Different ML. Models
Models — R-Sqaure Values (Validation)

Depe.n dent ) Decision BootStra Boosted Neural
Variable Regression Trees Forest b Trees Network
Space Heating 0.581 0.606 0.639 0.630 0.739
Alr 0.616 0.509 0.595 0.611 0.669
Conditioning
Water Heating 0.662 0.750 0.460 0.750 0.844
Appliances 0.874 0.559 0.754 0.760 0.876
Lighting 0.683 0.621 0.456 0.603 0.825
Others 0.183 0.231 0.197 0.219 0.369
Total 0.599 0.501 0.402 0.650 0.670
MODEL IMPLEMENTATION

A simple example case is presented in this section to illustrate how the developed model can
help predict building energy performance through energy retrofits. A sample average housing
unit is determined based on the data, using mean values for numerical/continuous variables, the
median value for numerical/discrete and categorical/ordinal variables, and mode value for
categorical/nominal variables. The sample house is a unit with 2,513 square feet, three
bedrooms, two bathrooms, located on a cold/very cold climate, occupied with three households.
According to the developed model, the total energy consumption of the sample house is
predicted to be 125.9 MBtu per year, which is equal to 36,899 kWh if only electricity is used in
that housing unit (12,300 kWh per person per year or 14.7 kWh per square feet per year). This
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predicted value is in line with the EIA average annual electricity consumption of 10,400 kWh per
person per year for a U.S. residential utility customer. This example case is used to investigate
the impact of some EEM examples on building energy consumption. The EEM selected to be
investigated in this section are (1) installing thermostat; (2) replacing a higher portion of inside
light bulbs with LED; and (3) replacing the appliances with a newer (and more energy efficient)
ones. These EEM impacts the energy consumption on air conditioning, lighting, and appliances
and electronics, respectively.

Table 3. The Impact of EEM on Average Building Energy Consumption
Predicted Predicted

EE Impacted Energy Energy
M Variable Value Description Energy Category saving
Category Consumption (kWh per
(MBtu per year) year)
1 There is a thermostat Air 9.0 101.6
I THERMAIN 0 There is no thermostat  Conditioning 9.3 -
All of the inside light
4 bulbs that are LED 2.3 44d.4
Most of the inside light
3 bulbs that are LED 26 372.0
About half of the inside C
2 LGTINLED 2 light bulbs that are LED Lighting 2.7 326.4
Some of the inside light
! bulbs that are LED 33 164.1
0 None of the inside light 3.9 i
bulbs that are LED '
Age of most-used
1 refrigerator is less than 11.6 30.1
2 years old
Age of most-used
2 refrigeratoris 2 to 4 11.7 69.1
years old
Age of most-used
3 refrigeratoris 5 to 9 11.7 72.5
years old Appliances /
3 AGERFRII Age of most-used Fridge
4.1 refrigeratoris 10 to 14 11.8 48.2
years old
Age of most-used
4.2 refrigeratoris 15 to 19 11.8 44.6
years old
Age of most-used
5 refrigerator is 20 years 12.0 -
or older
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The results of model implementation are shown in Table 3. As the results show, the annual
energy saving for implementing each EEM can be calculated using the developed model. For
example, installing a thermostat can reduce the required energy for air conditioning for around
101.6 kWh per year. Assuming the average electricity rate of 13.20 cents per kWh in the U.S.,
installing a thermostat could result in saving $13.4 per year for air conditioning for the sample
house. On the other hand, installing more LED lights could increase the saving from $21.6 to
$58.7 per year, based on the portion of light bulbs that are LED. Finally installing a newer
refrigerator could increase the energy savings up to $4.0 per year. Such information could help
decision-makers to predict the impact of EEM on building energy consumption and make more
effective decisions for energy retrofits.

CONCLUSION AND FUTURE WORK

The proposed framework aims at determining the best set of features for a machine learning-
based building energy consumption prediction as well as developing such model. This study
addresses areas that need further research attention as identified by Amasyali and EI-Gohary
(2018) in their comprehensive review of data-driven building energy consumption prediction
studies by targeting big energy data analytics and the residential sector. The performance of the
developed framework is tested on 2015 Residential Energy Consumption Survey (RECS) data
through the use of a two-step feature selection method as well as different machine learning
algorithms. Results indicate that the total energy consumption can be predicted with more than
81% accuracy and that the output can be used to implement EEM for energy retrofit. One
limitation of the presented paper is that the model is not validated through real case studies
which is being addressed in an ongoing study by the research team.
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