
the as-built data from the bridge construction site. Optimal scan positions, i.e. 

planning for scanning, will be carefully considered for capturing as much detail as 

possible. Completed or partially completed objects present in the 4D information 

model will be recognized in the scans. The timeline of completion of a bridge 

component is defined by the start and end dates indicated in the schedule.  

 The 3D bridge design, schedule information and the as-built point cloud data 

are the inputs into the framework. The 3D as-designed model is first converted into a 

triangulated mesh (STereoLithography (STL)) format. Once converted, the object 

recognition algorithm virtually scans the 3D IM and matches as-planned data point 

coordinates with as-built data point coordinates, and based on a pre-defined threshold 

value, it identifies model objects that are present in as-built data.  The results are then 

reflected in the project schedule for each activity. It is important to note here that the 

results are based on the number of objects recognized, which can easily be converted 

into Earned Value (EV) for each activity.  

The progress made, in terms of completed number of components and the 

percentage of components that are completed, will be calculated and the planned 

schedule will be updated. The updated schedule will represent the actual on-going 

progress and reflect the discrepancies between the planned and actual schedules. 

Based on the actual schedule, the expected start and end dates of the subsequent 

bridge components will be updated, providing an accurate and objective construction 

progress report. Scanning will be performed at regular intervals, depending on the 

project, and the schedule will be updated in a similar manner until the entire project is 

completed.     

 

 

Figure 1 Bridge Construction Project Progress tracking using LiDAR and 4D 
Information Models 
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CONCLUSIONS AND FUTURE WORK 

This paper presented a review of the current state-of-the-art techniques and 

technologies for measuring progress tracking in vertical and horizontal projects. It 

was found that there are no studies which have directly used LiDAR technology and 

Information Models for progress tracking for horizontal construction projects. Based 

on the evidence from previous research (Turkan et al., 2012 and 2013), it is expected 

that LiDAR and 4D information models could effectively be used for tracking 

transportation projects, i.e. project resources and commodities, and update project 

performance information in a timely manner. Thus, the paper presented a framework 

showing how progress tracking of a bridge project can be performed using LiDAR 

and Information Models.  

Future research efforts will be directed towards applying the framework for 

two bridge projects owned by ODOT. Since it is not a common practice among DOTs 

to develop 3D information models for bridge projects, the model required as input for 

the framework will be manually developed by the authors using commercially 

available off-the-shelf software. The framework will be validated using the developed 

3D model, the project schedule information and the acquired as-built data using TLS. 

It is expected that one of the challenges will be the recognition of elements that are 

still in progress in non-segmental bridges. For instance, cast-in-place concrete box 

girders may require several days to complete and the progress made during each day 

may need documentation. The portion of the box girder completed will have to be 

identified based on the comparison with the 4D information model, where the box 

girder may be designed as a single unit. The percentage of completion of a box girder 

must be identified. Similar challenges may be encountered when detecting the 

construction progress of slip-formed pylons.   
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Abstract 
 

One of the main desired qualities of an efficient project management in the construction 

industry is the ability to visualize a construction project in 2D drawings and execute them 

accurately and efficiently on-site. However, there are several types of delays that significantly 

influence project durations, often resulting from misunderstanding and miscommunications 

among parties (owners, contractors, and other stakeholders). One of the more common delays 

is change orders that are usually attributed as one of the major reasons behind delays in 

construction. Making changes after a building enters the construction phase can be very 

expensive, conflicting, and time-consuming. Such delays may arise due to the lack of 

communication and coordination among the owner and the contractors regarding the change 

orders. In most instances, it is highly conflicting to form a mutual agreement when there is a 

predicted price difference to accept a change order. To minimize the impact of change orders 

on the design and total cost, an approach that allows communication and interaction with 3D 

models through advanced visualization tools (i.e., virtual and augmented reality 

environments) can be effective. To further identify the influence of immersive virtual 

environments (IVEs) on project management, a systematic approach is proposed through 

which stakeholders can: (1) visualize and interact with 3D models in one-to-one scaled 

realistic virtual environments (fully immersive); and (2) visualize the dollar amount changes 

as the results of change orders. The results of the presented case study show that clients can 

exercise the ability to make changes virtually well before actual construction begins.  

 

Keywords: Cost estimation; Building information modeling; Immersive virtual reality; 

Change orders; Design. 

 

INTRODUCTION 

 

The Architecture, Engineering, and Construction (AEC) industry heavily relies on 

digital modeling, simulation, and visualization to improve communications among 

stakeholders, identify clashes, and examine alternative solutions (e.g., value engineering). 
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These tools have significantly assisted project teams to complete projects on time, within 

budget, and at a higher quality. They also have shown to be strong tools to communicate 

different change orders and alternative solutions among stakeholders, resulting in increased 

satisfactions among the involved parties. The core element of these simulations and 

visualization techniques and tools is Building Information Modeling (BIM) which has widely 

been adopted by the AEC industry over the past few years. One of the main applications of 

BIM is to better understand the prospective creation or changes before physical 

implementation of different segments of projects. Implementation of BIM workflow that can 

integrate model-based data into an array of platforms, quantity takeoffs, and cost estimations 

is getting more granular, changing the decision making the process for each project and how 

they are conducted. 

 

Although BIM has revolutionized the AEC industry, getting ramped up to 5D (3D + 

cost and time) takes time as BIM capabilities are expanding. Additionally, BIM does not 

represent the entire scope of the project. The main reason is that the best imagination cannot 

be made using just a 3D model. In order to create more clarity regarding the models and 

reduce the uncertainties associated with project details among stakeholders, advanced 

visualization tools such as virtual reality (VR) tools have shown to be very effective. Such 

tools have the potential to improve the current approaches in design by involving end-user 

(owner or project manager) feedback, without requiring to know how to read and understand 

2D drawings or CAD models. These tools allow stakeholders to fully be immersed in 1-1 

scaled virtual environments and examine different aspects and specifications of the designed 

models. As the complexity of designs is increasing among all infrastructure projects, VR 

tools have shown promising benefits to ensure and improve communication among 

stakeholders, which perhaps is the major shortcoming in understanding and approval of 

change orders. 

 

Although, it is possible to develop VR models within VR packages (e.g., Unity 3D), 

AEC practitioners have a desire to directly transfer geometrical building data from CAD to 

VR (e.g., directly through Revit). The reason for this is to reduce repetition, data redundancy, 

and loss of information. Additionally, existing VR techniques lack the ability to show the cost 

impacts of different change orders in real-time. In order to address these challenges, there is a 

need to develop and implement a model-based cost estimating approach within Immersive 

Virtual Environments (IVE). Not only such approach would eliminate the use of VR 

packages for creating interactive virtual environments, but also allow the stakeholders to gain 

an understanding of cost impacts associated with each order.  The proposed method in this 

paper aims towards addressing these changes and specifically answer the research question: 

�how various design alternatives can be evaluated within IVEs in order for stakeholders gain 

a proper understanding of performance and cost impacts of each alternative design?� 

 

The paper presents the research through a literature review and gap analysis on the 

use of VR and IVEs for integrating design changes as well as the associated cost impacts. 

The paper presents the proposed method, the IVE system for data acquisition, and a case 

study on how the proposed approach can have the cost-saving impact of AEC projects. 

Finally, the paper is concluded by a discussion and presentation of the planned future work. 

 
RELATED WORKS 

 

Preparation of a reliable and realistic preliminary estimate to aid the decision makers 

to commit funds for a specific project is a complicated assignment. Traditional methods and 

Construction Research Congress 2018 523

© ASCE

https://www.civilenghub.com/ASCE/143597433/Construction-Research-Congress-2018-Construction-Information-Technology?src=spdf


operations produce unsatisfactory aid due to the lack of accuracy of project details, especially 

in the pre-design stage of a project (Jiang 2011). Within the past decade, the AEC industry 

has adopted BIM to visually communicate and exchange information among project 

stakeholders. Although BIM provides 3D models along with the geometric and semantic 

information about the building and its components, prior researches illustrate that BIM does 

not fully provide the cost of the various architectural design features that the decision makers 

might need to provide design feedback for (Kozhevnikov et al. 2008; Shiratuddin et al. 2004). 

In order to provide the cost of various alternative designs, a process of integrating the object 

attributes from the 3D model with the cost information from a database of the estimator has 

shown to be accurate and effective (Sattineni and Bradford 2011). Model-based cost 

estimating offers reducing time, eliminating errors, and improving productivity on the cost 

estimating process. It also offers users with accurate and consistent design-related data and 

information, accommodates the functions needed to model the building, and provides a 

virtual view of the building model. Moreover, BIM modeling provides estimators exact 

quantities and estimate construction costs in a less time with more accuracy (Bazjanac 2006). 

Hence, there is a significant amount of improvement in communication and interoperability 

of information among different participants involved in an AEC project (Drettakis et al. 2007; 

Heydarian et al. 2015). However, there is a need for involving stakeholders during the 

architectural design process, which has been identified as one of the major issues in current 

design approaches (Bullinger et al. 2010). User Centered Design (UCD) has shown to be an 

effective approach to improve the final product based on end-users' needs in many domains, 

including software design and the automotive industry. However, due to the lack of time and 

resources, as well as the growing number of parties involved in design and construction 

phases of AEC projects, end-user involvement is usually minimized and in many cases 

eliminated (Bullinger et al. 2010; Heydarian et al. 2015; Oijevaar et al. 2009). In order to 

effectively allow stakeholders to fully understand the design, IVEs are used for engaging 

them in the design process of projects by combining the strengths of pre-construction mock-

ups that provide a sense of presence to decision makers and BIM models that provide the 

opportunity to evaluate alternative design options in a timely and cost efficient manner 

(Eastman et al. 2011; Goucher and Thurairajah 2012). Furthermore, by creating a better sense 

of realism through its 1-to-1 scale, building engineers and designers can incorporate IVEs in 

their work processes as a tool to understand the impact of design features on cost, and receive 

constructive feedback during the design phase. 

 

The other technology that has progressed greatly in the construction industry in recent 

years is visualization technology and 3D graphics. VR is a computer generated simulation of 

a 3D image or environment that can be interacted with in a seemingly real or physical way by 

a person using special electronic equipment such as a helmet with a screen or sensor fitted 

gloves (Whyte 2003). VR applications allow the estimators to visualize design and 

construction information in 3D, photo-realistic, and interactive images. Hence, it allows the 

owners to visualize the building and to interface with it. The VR confers the estimators� 

ability to select the components that should be included in the estimates (interaction) and 

walk inside the building and have a better understanding of project elements (navigation) 

(Farnsworth et al. 2015; Hilfert and König 2016). 

 

This study tries to make a process of construction estimating simpler and more 

instinctive as well as allows the estimator to observe the exact location of the project 

elements and the relationship between those elements while being in the virtual building. 

Moreover, the estimator can visually estimate the project by selecting the different elements 

and apply various materials to the components. While choosing the different components and 

Construction Research Congress 2018 524

© ASCE

https://www.civilenghub.com/ASCE/143597433/Construction-Research-Congress-2018-Construction-Information-Technology?src=spdf


materials, the quantity takeoff and the estimated price will be updated. As a consequence, it 

helps decrease the time for manual data entry by extract and transfer the data from a virtual 

model. Information can extract from the model while estimators navigate through the model. 

 

METHODOLOGY 

 

The proposed method is an integration of BIM models and cost databases in an IVE. 

The first phase consists of integrating BIM model with an external relational cost database in 

an attempt to automate the preparation of real-time costs for change orders. In the second 

phase, a dynamic link between BIM and VR game engine is created. The VR environment 

allows for easy exchange of data and information during the conceptual estimation process. 

The graphical overview of the proposed methodology is shown in Figure 1.  

 

 
Figure 1. Overview of the proposed method 

 

Importing 3D Models into Game Engine 

 

As the first step, the 3D SketchUp models are imported into Unity 3D. It is important 

to note that Sketch up was chosen in this paper due to the fact that 3D models are lighter 

(processing and computationally) and easier to transfer to other programs; the similar 

procedure can be done through other 3D modeling programs such as Revit. However, those 

programs are more computationally costly. To import the models into Unity, the 3D model is 

divided into two base sections, furniture, and building components such as walls, floors, 

beams and columns. The furniture is imported into Unity 3D as COLLADA and/or FBX 

formats. However, the building components are at first imported to AutoCAD (or 3ds Max) 

in order to be able to convert the Autodesk material library to standard material. Through this 

approach two main purposes are met: (1) an export from AutoCAD can assure better division 

in elements (we just need to detach elements or attach them so we can use them in Unity; and 

(2) AutoCAD does not make any glitches or lose any materials and it also names elements in 

an organized format, which is helpful in Unity 3D. The AutoCAD model is then imported as 

an FBX format into Unity 3D and the building components and furniture are attached 

together. In Unity, 3D colliders are then generated for the model. The importing procedure is 

extremely important because it is important not to lose any material or specification 

information and every single detail can cause a terrible result in cost estimation. 

 

Material and Texture Conversion 

 

Once the importing procedure is completed, there is a need for implementing a 

functionality where the user can interact with the model and change the materials and 

textures. To achieve this, the textures and materials are imported to Unity by the referenced 
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