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rotation can be calculated using virtual work or other techniques (in this 
example, Θ = PL2/16EI as shown in Fig. 8-4). These two conditions produce 
two points on the linear M/θ curve of the beam (at the x and y axes). The 
line connecting these two points (C and D) is called the beam-line, as 
shown in Fig. 8-4. The intersection of the beam line CD and the connection 
M/Θ curve gives the moment and rotation that are actually present in the 
member. It should be noted that, for this procedure, the end deformation 
of the column was ignored based upon the assumption that a relatively 
small deformation will occur at the column end. The column-end defor-
mation is prevented from rotation by the beam moment acting on the 
opposite side. For design, the actual value for the negative beam end 
moment, Me, can be determined from the graph. This value falls between 
zero and wL2/12 for a uniformly loaded beam. See Mosallam (1994) for 
discussion on the end moment for semi-rigid connections. Mottram and 
Zheng (1996) have adopted this beam-line technique to describe PFRP 
interior beam-to-column connections.

8.3.4. Closed-Form Expressions for Beams with Semi-Rigid 
End Connections

Simple expressions for defl ection and end rotations of composite beams 
with semi-rigid behavior, which accounts for shear deformation, was 
proposed by Turvey (1998). In developing this closed-form expression, the 

Figure 8-4. Beam-line method for semi-rigid connections analysis.
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moment–rotation behavior was assumed to be linear. This closed-form 
expression is given by:

 δ
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where

φ =
QL

k E I

3

1 11 11

 (8-3a)

 ϖ α β αβ= + +48 962k  (8-3b)

and
δ = mid-span defl ection
L = span
Q = total applied load
E11 = longitudinal modulus of elasticity of the beam
I11 = moment of inertia (major axis)
k1 and k2 = constants that depend on the load distribution (refer to 

Table 8-1)
β = dimensionless connection fl exibility parameter expressed as:

 β =
E I

K Li

11 11  (8-4)

where
Ki = initial linear rotational stiffness of the connection which is deter-

mined from the M/θ experimental curve as described earlier
α = dimensionless shear fl exibility parameter expressed as:

 α =
E I

k G ALV

11 11

21
2

 (8-5)

where
kV = modifi ed shear coeffi cient. Different expressions for calculating 

this coeffi cient can be found in Bank and Bednarczyk (1988) and 
Mosallam and Chambers (1995).

G21 = shear modulus
A = cross-sectional area.
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If the shear deformation effect is ignored (i.e., α = 0), Eq. 8-2 will be 
reduced to the following simpler form:

 δ
β
β

=
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 (8-6)

Equation 8-6 will reduce to the commonly known mid-span defl ection 
expressions for simply supported beams by setting Ki= 0, and conse-
quently, β = ∞:

 δ =
QL k

k E I

3
2

1 11 112
 (8-7)

Similarly, the mid-span defl ection expression for fi xed end beams 
(without a shear defl ection component) can be obtained from Eq. 8-6 by 
setting Ki = ∞, and consequently, β = 0:

 δ =
QL

k E I

3

1 11 11

 (8-8)

Turvey (1997) also developed the following expression for calculating 
the rotation of the semi-rigid ends of a composite beam:

 θ
β

β
=

+
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 (8-9)

Table 8-1. Values of Coeffi cients k1, k2, k3, and k4 for Semi-Rigid PFRP 
Beams with Semi-Rigid End Connections

Beam Loading Distribution on 
Beams with Semi-Rigid Ends k1 k2 k3 k4

L/2 L/2 

Q 

L

Point load at 
mid-span

192 8 8 4

L/2 L/2 

w=Q/L 

L

Uniform load 
over entire span

384 10 12 5
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It should be noted that, as expected, the shear deformation has no effect 
on Eq. 8-9. Also, for a beam with fi xed ends (i.e., Ki = ∞, and consequently 
β = 0), Eq. 8-8 reduces to zero, and by setting Ki = 0, and consequently, β 
= ∞, the following expression is obtained from Eq. 8-9 describing the end 
rotations of a simply supported composite beam:

 θ =
QL

k E I

2

3 11 112
 (8-10)

8.3.4.1 Performance Indices. To appreciate the gain of including the 
partial fi xity (semi-rigidity) of commonly used connection details of PFRP 
frame connections, Turvey (1997) proposed expressions for what are 
called “performance indices” that relate the mid-span defl ection, associ-
ated load, and end rotations of composite beams with semi-rigid ends and 
semi-rigid beams to identical composite beams with simply supported 
end conditions (which is commonly used today in sizing PFRP frame 
structures members). These coeffi cients are similar to the λ-coeffi cients 
introduced initially by Mosallam and Chambers (1995) to relate the long-
term total defl ection to short-term instantaneous defl ection of PFRP 
beams.

8.3.4.1.1 Defl ection Reduction Index (λδ). The defl ection reduction index 
is the ratio between the mid-span defl ections of a beam with a specifi c 
semi-rigid rotational stiffness and a simply supported beam having 
identical properties, dimensions, and subjected to the same total load (Q). 
This expression is obtained by dividing Eq. 8-2 by the same equation after 
setting β = ∞ (a simply supported case). Introducing a new defl ection 
factor k4 (refer to Table 8-1) and rearranging, we get:
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or
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If the shear deformation component is neglected (i.e., α = 0), Eq. 8-11 
will reduce to:

 λ
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As expected, λδ equals unity for the case of a simply supported beam 
(i.e., β = ∞). On the other hand, if the beam’s ends are fi xed, Eq. 8-11 
reduces to:

 λδ = 







1

4k
 (8-14)

Equation 8-14 results in the known ratio between fi xed-end and simply 
supported mid-span defl ections of identical beams subjected to identical 
loads.

8.3.4.1.2 Load Enhancement Index (λQ). The load enhancement index is 
the ratio between the load capacity of a beam with a specifi c semi-rigid 
rotational stiffness and a simply supported beam having identical 
properties, dimensions, and subjected to the same defl ection limit (e.g., 
δmax = L/360). This can be obtained by rearranging the two forms of Eq. 
8-2. It is obvious that this enhancement index is simply the inverse of the 
defl ection reduction index (λδ), in general, regardless of the type of end 
conditions or the inclusion of the shear deformation effects, that is,

 λ
λδ

Q = 







1
 (8-15)

As expected, λQ equals unity for the case of a simply supported beam 
(i.e., β = ∞). On the other hand, if the beam’s ends are fi xed, Eq. 8-11 
reduces to:

 λQ k= 4  (8-16)

Equation 8-16 results in the known ratio between fi xed-end and simply 
supported load capacities of identical beams subjected to identical span/
defl ection limits; that is, a fi xed beam loading capacity is k4

th the capacity 
of an identical beam with same span-to-defl ection limit.

8.3.4.1.3 Span Enhancement Index (λL). The span enhancement index 
for a composite beam with a prescribed load and a mid-span defl ection 
limit is the ratio between the allowable span of a beam with a specifi c 
semi-rigid rotational stiffness and the allowable span of a simply supported 
beam having identical properties, dimensions, and subjected to the same 
loads and mid-span defl ection limit. This can be determined as the positive 
root of the following cubic equation:

 λ λ β λ βL L L
3

2
2

4 2 0+ − − =k k k  (8-17)
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For a composite beam with a fi xed end, i.e. Ki = ∞, and consequently β 
= 0, Eq. 8-17 reduces to the following simpler form:

 λ λL L
3

4 0+ =k  (8-18)

The roots of Eq. 8-18 are: λL k= − 4 , λL k= + 4 , and λL = 0. Thus, the 
span enhancement index is λL k= + 4  (the only positive root). Similarly, 
for a case of a simply supported beam, i.e. Ki = 0, and consequently, β = 
∞, Eq. 8-17 will be simplifi ed to the following form:

 λL
2 1 0− =  (8-19)

Solving Eq. 8-19 yields the following two roots: λL = ±1. Using the posi-
tive root, the span enhancement index, as expected, is equal to unity.

8.3.4.1.4 Rotational Capacity (θc). It is advantageous to express the 
rotational capacity of a composite beam in terms of the serviceability limit 
on mid-span defl ection, that is, as a function of the prescribed defl ection-
to-span ratio, κc (Turvey 1997). An expression for the rotational capacity,

θc, is obtained by combining Eqs. 8-2 and 8-8, and replacing δ
L

 by the 
defl ection-to-span ratio κc. Thus:

 θ
κ β

ϖ
c
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k
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+( )1

3 1
 (8-20)

If the shear deformation effect is ignored, i.e., α = 0, then Eq. 8-20 
reduces to:

 θ
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 (8-21)

To demonstrate the effectiveness of the aforementioned closed-form 
equations for determining both the mid-span defl ection and the end rota-
tions of a composite beam with semi-rigid end connections, two numeri-
cal examples are presented.

Example 8-1: Calculate the mid-span defl ection and the end rotations of 
an 8 in. × 8 in. × 3/8 in. (203 mm × 203 mm × 9.5 mm) PFRP E-glass/
vinylester H-beam (Pultex 1625) with semi-rigid end connection details 
(refer to Fig. 8-5 here and Fig. 7-20D in Chapter 7 for end connection 
details). The total factored load is 2,500 lb (11,120 N) applied at the mid-
span. The total span of the PFRP beam is 9 ft (2.74 m). The initial linear 
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rotational stiffnesses of the end connections were determined 
experimentally [refer to connection detail TSW in Fig. 7-21 and Table 7-3 
to be 7,000 kip-in./rad (790.3 kN-m/rad)]. The following are the PFRP 
beam mechanical properties that were measured experimentally 
(Mosallam 1990): E11 = 2.35 × 106 psi (16.20 GPa), E22 = 1.00 × 106 psi 
(6.90 GPa), and G21 = 0.54 × 106 psi (3.72 GPa).

SOLUTION

i) Section Properties: Using the Creative Pultrusions Design Guide 
tables (Creative Pultrusions, Inc. 2003), the major moment of inertia and 
the cross-sectional area of the beam pultruded profi les are I11 = 99.18 in.4 
(4,127.8 cm4); and A = 8.73 in.2 (56.31 cm2), respectively.

ii) Calculate the Modifi ed Shear Coeffi cent (kv): Due to the anisotropic 
nature of PFRP composites, mechanical properties are directionally-
dependent. As a consequance, the ratio of the in-plane longitudinal 
modulus, E11, to the in-plane shear modulus, G21, for the pultruded profi les 
is higher than that of isotropic materials. In our case, E11/G21 = 4.35 as 
compared to a ratio of 2.60 for isotropic materials. For this reason, it is 
recommended to consider the shear deformation component when 
calculating the total mid-span defl ection (Mosallam 1990). The total 
defl ection at any point along the beam span is calculated using the 
following equation (Mosallam and Bank 1992):

Figure 8-5. Details of the semi-rigid connected PFRP beam of Example 8-1.
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 δtotal
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 (8-22)

where
δtotal = total defl ection due to bending moments and shear forces
fF and fV = functions that depend upon the loading and the boundary 

conditions (refer to Table 8-2). Note that subscript F refers 
to the fl exural term, and subscript V refers to the shear term

kv = the modifi ed shear correction factor (Bank and Bednarczyk 
1988).

For H-beams (open-web profi les):
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For box-beams (closed-web profi les):
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(8-24a)
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where

n
b

h
=

m
bt

ht

f

w

=
2

m
bt

ht
b

w

f

=

tf = fl ange thickness
tw = web thickness
b = fl ange width
h = distance between the centerlines of the fl anges

ζ =
E

E
w

f

Ew, Gw = longitudinal modulus of elasticity and shear modulus of the 
web

Ef, Gf = longitudinal modulus of elasticity and shear modulus of the 
fl anges

vf and vw = Poisson’s ratios for the fl anges and the web, respectively.

It should be noted that, for prelimanary analysis, the shear correction 
factor can be taken as:

 k
A

A
v web

Gross

≅  (8-24b)

where Aweb = the area of the web(s), and AGross is the gross sectional area = 
Aweb(s) + A fl anges.

Using Eq. 8-23, we have:

kv = 0.29

Note: The approximate value of this coeffi cent according to Eq. 8-24b is:

k
A

A
v web

Gross

≅ ≅
×

=
7 25 0 375

8 73
0 31

2 2

. .

.
.

in. in.

in.

iii) Calculate the shear fl exability ratio:
Using Eq. 8-5, we get:
For kv = 1:
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Table 8-2. Flexure and Shear Deformation Functions

Load Case
Boundary & 
Loading Conditions f1(x) f2(x)

Load Case 1

P
x Lx

6
33 2− +( )

Px

Load Case 2

Px
a x x a

2

6
3 0−( ) ≤ ≤;

Pa
x a a x L

2

6
3 −( ) ≤ ≤;

Px; 0 ≤ x ≤ a

Pa; a ≤ x ≤ L

Load Case 3

q

x Lx L x

o

24 4 64 3 2 2− +( )
q

x Lx

o

2 22− +( )

Load Case 4

q x

L L L x Lx x

o
2

3 2 2 3120 10 10 5− + −( )
q

L L x Lx x

o

6 3 32 2 3− +( )
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