
 
 

 
Values of 88% and 90% are commonly used, and values of 70% and 75% have also been 

proposed (DeCoite, 1981 and Mitchell, 2007).
 
 Once wastewater production is estimated using 

Equation (4), groundwater infiltration is estimated using Equation (5) by subtracting wastewater 

production from the average dry weather flow rate.   

 

 
 

Substituting Equation (4) into Equation (5) provides groundwater infiltration in one step as 

shown in Equation (6). 

 

 
 

The general assumption that 0 ≤ QGWI ≤ Qmin governs the allowable range of x, and this range 

is determined by solving Equation (6) for x when QGWI = 0 and QGWI = Qmin.  Based on these 

assumptions, 1 – (Qmin/Qavg) ≤ x ≤ 1.  The application of the Wastewater Production Method is 

demonstrated in the following example: 

 

STEVENS-SCHUTZBACH METHOD 

 

The Stevens-Schutzbach Method estimates groundwater infiltration based on the minimum 

and average flow rates using the relationship shown in Equation (7) (Mitchell, 2007). 
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Once groundwater infiltration is estimated using Equation (7), wastewater production is 

estimated using Equation (3) by subtracting groundwater infiltration from the average dry 

weather flow rate.  The application of the Stevens-Schutzbach Method is demonstrated in the 

following example: 

 

MITCHELL METHOD 

 

The Mitchell Method uses the average flow rate and a minimum factor (MF) to determine an 

expected minimum flow (QMF).  Actual and expected minimum flow rates are then used to 

estimate groundwater infiltration using an iterative solution as shown in Figure 2 (Mitchell, 

2007). 

The minimum factor is initially computed with Equation (8) assuming no groundwater, and 

groundwater infiltration is updated using Equation (9).  Convergence is often achieved in no 

more than three iterations. 
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The minimum factor equation used here is the equation originally reported in the literature 

(Mitchell, 2007).  However, other minimum factor equations have also been reported by various 

sources, and these equations are mathematically interchangeable.  The application of the Mitchell 

Method is demonstrated in the following example: 
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A NOTE ABOUT UNITS 

 

When applying these four methods, it is important to understand implications regarding units 

of measure.  The % Minimum and the Wastewater Production Method can be used with various 

flow rate units of measure, provided that consistent units of measure are used.  However, both 

the Stevens-Schutzbach Method and the Mitchell Method require that units of million gallons per 

day (MGD) be used for the minimum and average flow rate, and the resulting wastewater 

production and groundwater infiltration estimates are provided in the same units, as well. 

 

CONCLUSION 

 

The previous sections demonstrate how to use various methods to estimate groundwater 

infiltration in sewers using flow monitor data.  However, they do not demonstrate when to select 

one method over another.  The order in which these methods are presented reflects the historical 

timeline on which they were developed from the % Minimum Method and Wastewater 

Production Method in the 1970s to the Stevens-Schutzbach Method in the 1990s to the Mitchell 

Method in the 2000s, and the newer methods accommodate or resolve weaknesses of the older 
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methods.  Neither the % Minimum Method nor the Wastewater Production Method account for 

basin size.  As basin size increases, flow attenuation occurs.  This phenomenon is not 

acknowledged by these two methods, and as a result, they tend to overstate groundwater 

infiltration in larger basins.  Both the Stevens-Schutzbach Method and the Mitchell Method 

accommodate flow attenuation and provide more realistic estimates of groundwater infiltration in 

larger basins.  The Stevens-Schutzbach Method does this entirely on empirical grounds, while 

the Mitchell Method accomplishes this while rooted in established minimum factors familiar 

from sewer design.  This paper provides details for wastewater professionals to use each of these 

methods, as well as appropriate details and caveats to consider along the way. 
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ABSTRACT 

 

Over the past years, there has been a sustained interest in developing machine learning (ML) 

models that are sophisticated enough to capture the failure trends of water distribution systems 

and that are able to predict future breaks of the pipeline system. Given the limited budgetary 

resources of water pipeline owners, coupled with the deteriorated state of water networks, there 

is a vital need to deploy such tools to prioritize inspection and replacement of vulnerable regions, 

as well as to mitigate the chance of having catastrophic failures within the system. This study 

extends several ML algorithms that analyze the historical failures of water pipelines, with the 

goal to predict future breaks. The performance of each algorithm has been examined using 

various water networks as different case studies with varying network size and configurations. 

The developed models are all aimed to estimate the future likelihood of pipe failure by exploring 

historical failure patterns, surrounding attributes (e.g., environmental and demographic), as well 

as pipe characteristics. To improve the predictive power of the learning algorithms, several 

engineered features have been also created from raw data and tested to facilitate the learning 

process of each algorithm. While developing such models is by no means an insignificant task, 

an equally, if not more important emphasis should be put on how precisely these models are 

predicting actual failures. Additionally, the model variables should be defined wisely enough to 

ensure the uniqueness of each network has been captured and incorporated into the analysis. 

Lastly, it is crucial to evaluate the precision of the developed predictive models to evaluate the 

level of reliability a utility can expect by deploying it, as well as the further improvement needs 

of the predictive algorithm itself. Accordingly, this paper will review the analyses performed, the 

outcomes of this study, and discuss plans to improve upon the analyses to ensure that maximum 

usefulness of the model can be achieved. 

 

1. BACKGROUND 

 

Water demand is increasing rapidly around the world, while the water resources are 

becoming gradually more scarce. The water network infrastructure is also critically deteriorated, 

leading to a growing rate of failure of treated water. These failures are not only worsening the 

imbalance of supply-demand, they also can be accompanied by considerable consequences, such 

as decreased reliability, supply interruptions, and societal inconveniences (Yerri et al., 2017). 

Some of these consequences could be prohibitively expensive depending on the size and location 

of the failed pipe, as well as the impact it can have on the overall function of the system. 

Considering the critical condition of the aging water infrastructure and the significant number of 

failures, which is expected to keep increasing in the coming years (Thornton et al., 2008), a more 

aggressive proactive management approach of water assets is required, rather than the currently 

more common reactive one.  

Pipelines 2020 203

© ASCE

https://www.civilenghub.com/ASCE/148549498/Pipelines-2020-Utility-Engineering-Surveying-and-Multidisciplinary-Topics?src=spdf


To prevent catastrophic failures, the goal is to proactively identify and prioritize the high-risk 

pipes and replace or rehabilitate them in time. However, the success of the prioritization step 

highly relies on developing a precise failure prediction model which can estimate the probability 

of failure of a system at the pipe-level. Developing such model can be a problematic task due to 

the limited availability and quality of the data and significant uncertainty associated with the 

actual conditions of the buried assets. Several studies have been done recently to tackle this 

problem; these can be categorized mainly in knowledge-driven physical models and data-driven 

models (Jenkins et al., 2014; Zhang et al., 2018).   

Knowledge-driven models are mostly proposed to predict the deterioration process of the 

pipeline, focusing mostly on the individual components of the physical process that leads to the 

failure of the pipe, e.g. corrosion (Rajani and Makar, 2000). However, deterioration of the pipe is 

usually a complex process, not still fully understandable by the current physical models (Winkler 

et al., 2018). Additionally, these models can only take into account a few numbers of affecting 

covariables at the time, which make them applicable only for certain conditions, such as 

particular pipe materials or failure modes. In data-driven models, on the other hand, the failure 

pattern is assumed to be the same for pipes that share similar attributes. The failure pattern 

supposedly can be learnt from the available dataset, such as past pipe failure history of the 

system and time-dependent and -independent features of the pipe itself. Among data-driven 

models, artificial intelligence algorithms have recently drawn much attention in the forecasting 

of water main breaks, owing mainly to the capability of these models to solve complex problems 

by ingesting a large amount of data without the necessity of detailed model assumptions (Tran et 

al., 2007; Nicklow et al., 2017; Winkler et al., 2018, Chen et al., 2019). While these models have 

proven to be beneficial for asset owners, they can only learn from what they see, which means if 

the model is fed poorly, because of lack of data, lack of cleaned data, or poor-quality data it will 

only provide poor results. Also, there is usually a necessity of high amount of data and 

computational resources for these models, which motivates the necessity of reaching a 

reasonable trade-off among performance and computational burden (Sadrfaridpour et al., 2016).   

Accordingly, the predictive model developed in this study aims to estimate the future 

probability of failure using historical failure patterns, environmental and demographic attributes, 

as well as pipe characteristics. The goal is to improve the predictive power of the learning 

algorithms by developing appropriate engineered features from raw data to assist the learning 

process. In addition to the model improvement, another focus of study is to evaluate the 

reliability of the model and ensure that the interpreted results are operationally applicable for the 

asset owners. 

 

2. DATA AND METHODS 

 

Partnered with a utility based in the mid-Atlantic region, the authors have obtained 

information on pipe break dates and locations between 1999 to 2018, together with the geospatial 

data of the pipes. The break data has been aggregated to a yearly temporal scale. Environmental 

and demographic data was also collected from public sources and spatially joined to the pipe 

network. Historical failure trends were also mined and used as explanatory variables. The 

variation of some variables over time has been incorporated in the analysis; these have been 

divided into two groups of “time-independent” and “time-dependent” variables: 

- The time independent variables are the fixed covariates over the time windows which 

have been considered in the analysis. Variables included in this analysis are pipe features 
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(i.e. geographical locations of each pipe segment, length, diameter, material and 

installation year), hydraulic characteristics, soil properties (i.e. corrosivity index for 

concrete and steel, and run-off propensity), land use, and proximity to transportation 

infrastructures (road and rails); 

- The time dependent variables are those that can change value over the course of the 

observation period. The current predicting model takes into account the effect of the 

climate data and engineered features. The importance of engineered features and the 

process of extracting them from raw data will be discussed in more detail in the following 

subsections. 

 

2.1 Engineered Features 
 

Feature engineering is the process of using domain knowledge of data by extracting features 

from raw data and transforming them into formats that are suitable for the predictive model 

(Zheng and Casari, 2018). If the best optimized engineered features are extracted from the 

dataset, they help facilitate the learning process of the model and increase the predictive power 

of algorithms.   

In case of pipe failure prediction, the analysis is modelled as a binary classification task: 

failure (= 1) or no failure (= 0). The majority of the pipes in a water network system have zero 

failures in their records, which makes the precise prediction of a rare event, i.e. having failure, 

even more challenging. The characteristic of having frequent zero-value observations in a dataset 

is known as zero inflation. To combat the zero-inflation problem, a temporal lag and spatial 

buffer have been defined to introduce correlation between observations. It is a decent 

assumption, as previous studies have shown a strong spatial and temporal correlation between 

failures of the pipe in a water network system and its surrounding neighbors. Additionally, the 

spatio-temporal features were implemented since in practice, typical replacement schedules 

include more than one pipe, generally small neighborhoods or blocks, depending on the utility’s 
priorities and budgetary considerations. 

However, to maximize the potential benefit from the failure pattern recognition using 

temporal/spatial correlation, the most optimized combination of temporal lag and spatial buffer 

will be selected, based on evaluating several scenarios. It is worth highlighting that the optimized 

temporal lag and spatial buffer are specific to each network, in terms of system configuration and 

its temporal/spatial break history. After selecting the best lag and buffer to explore the spatial 

and temporal patterns, a linear buffer is usually used for determining the buffered/lagged failure 

history. This means that the linear distance along the pipe is used to spatially identify failures 

within a specified spatial buffer of a given pipe as opposed to a radial or rectangular area-based 

search. Linear spatial scanning is preferred for water distribution system data, as neither circular 

nor rectangular scan windows take the network structure into account (De Oliveira et al., 2010). 

 

2.2 Algorithm Selection 

 

Once all the inputs are collected, it is important to work on pattern recognition by utilizing 

different kinds of Machine Learning (ML) algorithms. Usually in the learning process of these 

algorithms, the machine is presented with example inputs and their actual outputs with the goal 

to produce an inferred function by learning a general rule that maps the inputs to outputs. The 

training process usually continues until the model achieves the desired level of accuracy on the 

training data. One type of desired output in learning models is called Regression in which the 
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outputs are continuous, rather than discrete. In the matter of probability of failure prediction, the 

problem, as mentioned before, has been framed as a binary classification task of failure (positive 

response = 1) or no failure (negative response = 0); the model returns a continuous variable 

bound between 0 and 1 corresponding to the probability of a positive response. Several algorithm 

structures are used to determine the mathematical relationship between two or more variables 

with different levels of dependency between them. The output and performance of each model 

varies based on the interdependency of variables, as well as the specific structure of the model. 

The algorithms which have been tested for predicting the probability of water main failures in 

the current analysis are the following: 

1. Logistic Regression (LR): an extension of linear regression which applies classification 

algorithm to assign observations to a discrete set of classes.  

2. Support Vector Machine (SVM): a pattern classification algorithm which is based on a 

collection of hyperplanes fitted to the dataset, used to best divide observation classes. 

3. Classification Tree (CT): recursive partitioning of dataset, structured as a decision tree.  

4. Random Forest (RF): ensemble of classification trees, each trained with bootstrapped 

samples of original data and with random subset of variables used for node splitting. 

A python package, named ScikitLearn, has been utilized to call each of these algorithms. The 

goal in all these structures is training the model with the historical data to learn the relationships 

between different covariates. Furthermore, the aim is to also narrow down the possible 

relationships and correlations between different variables to the most critical ones to avoid 

overfitting of the predictive model. While an overfitted predictive model may produce 

observations that closely match the historical data, it may fail to fit additional data or predict 

future observations in a reliable manner. Additionally, the objective is to get the most accurate 

probability of failure estimate for the future. 
 

3. DEMONSTRATION 
 

The case study area that supports the water pipeline system information and the break records 

provides high quality treated water to approximately 600,000 residents and is comprised of over 

2,000 kilometers of water mains, 35,000 watermain valves and 9,000 municipal fire hydrants. 

The failure data from 1999 to 2018 is provided, as well as raw pipe data. Following common 

predictive model practice, the dataset has been divided into two different subsets: 

- the training dataset, which is the sample of data used to fit the model; the model sees and 

learns from this data; 

- the validation dataset, which is the sample of data used to provide an unbiased evaluation 

of final model fit on the training dataset and is generally what is utilized to evaluate 

competing models. 

Regarding the case study area, the last three years of break data, i.e. 2016, 2017 and 2018, 

are separated as the validation dataset. 
 

3.1 Preliminary Performance Evaluation 
 

During training of the model a preliminary step was implemented where several trials of 

random holdouts were implemented to compare the model structures against each other, while 

tuning of the parameters was also conducted loosely. To aid the selection of the best model 

among four algorithms, the traditional precision measure in binary classification has been 

selected for preliminary evaluation of the models, but focusing only on the top 10
th

 percentile of 

the observations: 
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                                                                                                     (1) 

 

The top 10
th

 percentile refers to the ranking achieved by sorting the outputs, highest to 

lowest, based on the probability of failure (positive response = 1). That way, according to the 

predictive results, the assets with the highest likelihood of failure are targeted. In the equation 

above, OBS10 is the total number of pipe segments found in the top 10
th

 percentile and TP10 is the 

number of the true positive observation found in the top 10
th

 percentile of the prediction outputs. 

In other words, Precision10 is the proportion of pipes in the top 10
th

 percentile, ranked according 

to the predicted probability of positive responses, which are indeed positive when compared to 

the testing dataset. Based on the network configuration and break history of the system, the 

optimized spatial buffer of 50 meters has been determined for the case study area. Accordingly, 

the response of a given pipe has been defined as positive (= 1) if the pipe, or its 50 meter 

surrounding neighboring pipes, will fail. 

 

 
Figure 1- Initial Performance Evaluation of Different Algorithms. 

 
As can be seen from Figure 1, Random Forest (RF) is the most precise model among four 

algorithms. Accordingly, it has been selected for further analysis and more trials of random 

holdouts have been performed for tuning the algorithm parameters, e.g. number of trees in the 

forest and the minimum number of samples allowed in each leaf. Finally, the best RF structure is 

applied on the entire training dataset and its results are evaluated against the validation data to 

test the predictive accuracy and precision. 

 

4. PREDICTION RESULTS   

 

The last three years of break data (2016-2018) has been kept separate from the training 

dataset, as previously mentioned, to evaluate the performance of the developed predictive model. 

Using the best RF algorithm structure, the outputs are sorted on a pipe-level basis from the 

highest to lowest probability of failure. Focusing on the top percentiles of the predictions, e.g. 1
st
 

or 10
th

 percentiles, the riskiest pipes can be targeted. A top-percentile focus has been utilized 

since, practically, utilities only have a limited budget for capital improvement. Therefore, the 

most useful models should be highly accurate and precise for predicting the riskiest assets. Using 

the binary classification problem, four important terms will be applied to quantify the 

performance of model over each percentile: True Positives (TP), True Negatives (TN), False 
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