Estuarine and Coastal Modeling

Proceedings of the Twelfth International Conference

ESTUARINE AND COASTAL MODELING

PROCEEDINGS OF THE TWELFTH INTERNATIONAL CONFERENCE

November 7–9, 2011 St. Augustine, Florida

SPONSORED BY
Coasts, Oceans, Ports, and Rivers Institute (COPRI)
of the American Society of Civil Engineers

EDITED BY Malcolm L. Spaulding, Ph.D., P.E.

Cataloging-in-Publication Data on file with the Library of Congress.

American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia, 20191-4400

www.pubs.asce.org

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document. ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefore. This information should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing this information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers—Registered in U.S. Patent and Trademark Office.

Photocopies and permissions. Permission to photocopy or reproduce material from ASCE publications can be obtained by sending an e-mail to permissions@asce.org or by locating a title in ASCE's online database (http://cedb.asce.org) and using the "Permission to Reuse" link. *Bulk reprints*. Information regarding reprints of 100 or more copies is available at http://www.asce.org/reprints.

Copyright © 2012 by the American Society of Civil Engineers. All Rights Reserved. ISBN 978-0-7844-1241-1 Manufactured in the United States of America.

Preface

This conference represents the 12 th in a biennial series to explore the development, testing, application, calibration, validation, and visualization of predictions from estuarine and coastal models. Application of models to problems in hydrodynamics, water quality, and sediment transport were presented. There were a substantial number of papers highlighting the advancement of modeling capabilities for storm surge and coastal inundation and now/forecasting. Attendance at the meeting was 120 and included representatives from both the US and many foreign countries. Participants were predominantly government and academic engineers and scientist, but also included a significant number of industry professionals.

As for the earlier conferences in the series, the goal of the present conference was to bring together a diverse group of model developers, users, and evaluators to exchange information on new directions in the field and the current state-of-the-art and practice in marine environmental modeling. The primary focus was on development of new models and the application of models to bays, sounds, lagoons, estuaries, embayments, bights, and coastal seas. The models were addressed at solving engineering and environmental impact assessment problems and also at better understanding circulation and pollutant transport in near shore waters. Model applications to address regulatory requirements for facility sighting and operation were also presented.

The conference included 20 oral sessions and 1 poster session, held over the two and one half day meeting period. Papers from both poster and oral sessions are included in the conference proceedings. Each paper in the proceedings was presented at the meeting, subjected to at least three external peer reviews, and accepted, if appropriate and after revision, by the proceedings editor.

The enthusiastic support and assistance of the Organizing and Advisory committees, whose names are listed below, are acknowledged. We welcome new Organizing Committee members Michael Piasecki and Nickitas Georgas and thank outgoing member Alan Blumberg. Rich Signell will be chairing ECM 13. Joseph Pittle, University of Rhode Island Conference and Special Programs Development Office, managed the conference and contributed greatly to its success. Thanks are also extended to the many other individuals who generously served as session chairs and reviewers.

Organizing Committee:

- Dr. Nickitas Georgas, Stevens Institute of Technology, Hoboken, NJ
- Professor Michael Piasecki, New Yok University, NY
- Dr. Richard Signell, US Geological Survey, Woods Hole, MA

- Dr. David Schwab, NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, MI
- Professor Malcolm L. Spaulding, University of Rhode Island, Narragansett, RI

Conference Coordinator

Joseph Pittle, University of Rhode Island, Kingston, RI

Advisory Committee:

- Dr. Frank Aikman, NOAA, National Ocean Service, Silver Spring, MD
- Dr. Jesse Feyen, NOAA, National Ocean Service, Silver Spring, MD
- Professor Scott Hagen, University of Central Florida, Orlando, FL
- Dr. Guoqui Han, Environmental Sciences Division, Fisheries and Oceans Canada, St. Johns, NL, Canada
- Dr. Jeff Ji, Bureau of Ocean Energy Management, Reston, VA
- Professor Nikolaos Katopodes, University of Michigan, Ann Arbor, MI
- Professor Jin Lin, East China Normal University Estuarine and Coastal Research, Shanghai, China
- Professor Rick Luettich Jr., University of North Carolina Chapel Hill, Morehead City, NC
- Dr. Jinyu Sheng, Dalhousie University, Halifax, Nova Scotia, Canada
- Professor Y. Peter Sheng, University of Florida, Gainesville, FL
- Dr. McAllister Sisson, Virginia Institute of Marine Sciences, Gloucester Pt., VA
- Dr. Craig Swanson, Applied Science Associates, Inc., Narragansett, RI
- Dr. Roy A. Walters, Victoria, BC, Canada
- Dr. Zhaoqing Yang, Pacific Northwest National Laboratory, Seattle, WA
- Dr. Eduardo Yassuda, ASA South America, San Paolo, Brazil
- Professor Gour Tsyh Yeh, University of Central Florida, Orlando, FL
- Professor Chin Wu, University of Wisconsin-Madison, Madison, WI

Contents

Circulation Models

Nonlinear Tidal Dynamics in Florida Coastal Waters
Three-Dimensional Free-Surface Flow Model Verification and Validation: Assessment and Future Directions
Corpus Christi Bay Three-Dimensional Hydrodynamics and Salinity Simulations Using Finite-Volume Coastal Ocean Model (FVCOM)
Estuarine Dynamics
Modeling the Impacts of Water Withdrawls on the Thermal Regime of the Weeki Wachee River Winter Manatee Habitat
Evaluation of Baroclinic ADCIRC Using a Process-Oriented Test along a Slope
Application of Finite-Volume Coastal Ocean Model in Studying Strong Tidal Currents in Discovery Passage, British Columbia, Canada
Evaluation of Flushing Efficiency in an Embayment System Depending on Different Channel Configurations Using FVCOM: A Case Study in Abu Dhabi
Yong Hoon Kim, Kelly Knee, David Stuebe, and Eoin Howlett Hydrodynamic Modeling Analysis of Tidal Wetland Restoration in Snohomish River, Washington
Nowcast/Forecast Modeling Systems
The St. Johns River Operational Forecast System: Evolution of an EFDC Model Application from Development to Operational Implementation
Calibration of Tides in an Operational Forecast System for the Shelikof Straits—Cook Inlet Region of Alaska
Florida's Intracoastal Waterway in a Storm Surge Setting: Longwave Physics and Mesh Resolution

System (ESTOFS) 20)1
Yuji Funakoshi, Jesse Feyen, Frank Aikman, Hendrik Tolman, Andre van der Westhuysen, Arun Chawla, Ilya Rivin, and Arthur Taylor	-
An Automated Operational Storm Surge Prediction System for the National Hurricane Center	13
Cristina Forbes and Jamie Rhome	
Coupling of Tides and Storm Surge for Operational Modeling on the Florida Coast	30
Amy Haase, Jindong Wang, Arthur Taylor, and Jesse Feyen	
Pollutant Transport and Water Quality Prediction	
An Enhanced Numerical Model for Material Cycling and Dissolved Oxygen Dynamics in Tokyo Bay, Japan23	39
Morteza Jedari Attari and Jun Sasaki	
A Modeling Study of Hydrodynamic Circulation in a Fjord of the Pacific Northwest	56
Estimating Dissolved Oxygen Depletion from Anthropogenic and Riverine Loading Using a Three-Dimensional Water Quality Model	74
Inundation Modeling	
Bare Earth LiDAR to Gridded Topography for the Pascagoula River,	
MS: An Accuracy Assessment)5
Matthew V. Bilskie, Reza Akhavian, and Scott Hagen	
Generating Numerical Model Grids Using Light Detection and Ranging	15
	15
Generating Numerical Model Grids Using Light Detection and Ranging (LiDAR) Data	
Generating Numerical Model Grids Using Light Detection and Ranging (LiDAR) Data	
Generating Numerical Model Grids Using Light Detection and Ranging (LiDAR) Data	27
Generating Numerical Model Grids Using Light Detection and Ranging (LiDAR) Data	27 48

w ave and Seatment Transport Modeling	
Modeling Sediment Disposal in Inshore Waterways of British Columbia, Canada	392
Estimates of Bed Stresses within a Model of Chesapeake Bay	415
Model Sensitivity Studies	
Responses of Simulated Low Salinity Habitats to Uncertainties of Gauged and Ungauged Flows in the Myakka River Estuary in Florida	435
Sensitivity of an ADCIRC Tide and Storm Surge Model to Manning's n	457
Model Evaluation Frameworks and Applications	
A Regional Testbed for Storm Surge and Coastal Inundation Models—An Overview Y. Peter Sheng, Justin R. Davis, Renato Figueiredo, Bin Liu, Huiqing Liu, Rick Luettich, Vladimir A. Paramygin, Robert Weaver, Robert Weisberg, Lian Xie, and Lianyuan Zheng	476
Performance of the Coastal Modeling System for Various Conditions in the Navigational Waters of the South Texas Coastal Bend	496
River Flux Boundary Considerations in a Coupled Hydrologic-Hydrodynamic Modeling System E. Tromble, R. Kolar, K. Dresback, and R. Luettich	510
Coastal Dynamics of Global Climate Change	
Estimated Increase in Inundation Probability with Confidence Intervals for Galveston, Texas	528
Special Environmental Fluid Dynamics Code	
Modeling Hydraulic Control Structures in Estuarine Environments with EFDC	542
Modeling Transport of Disposed Dredged Material from Placement Sites in Grays Harbor, WA	560
Author Index	583
Subject Index	595

Nonlinear Tidal Dynamics in Florida Coastal Waters

Zizang Yang¹ and Richard Patchen¹

Abstract

This study investigated the dynamics of nonlinear tidal constituents, i.e., compound and shallow-water (C&S) tides, in Florida coastal waters. We simulated barotropic tides and depth-averaged tidal currents using a high-resolution, two-dimensional version of the Advanced Circulation (ADCIRC –2DDI) model. The model domain includes both the eastern Gulf of Mexico and the South Atlantic Bight. The model grid consists of 353,718 nodes and 622,367 triangular elements, with spatial resolutions ranging from 16 m to 41 km.

We focused on analyzing two major compound tides M_4 and M_6 of M_2 and two shallow-water tides MS_4 and MK_3 . For each tidal constituent, we derived co-tidal charts, co-range charts, and atlases of tidal current ellipses, energy fluxes, and dissipation rates.

We identified energy flux pathways of various C&S tides. We found that their energy fluxes follow different pathways than those of the astronomical constituents. The differences are attributed to differing genesis mechanisms. The astronomical tide originates from the deep-ocean equilibrium tide potential, while the C&S tides are predominantly generated in near-shore shallow waters due to nonlinear tidal interactions

Nonlinear tidal interactions were most intense in near-shore areas of the eastern Straits of Florida, the Big Bend and Florida Bay along the west Florida coast, and Biscayne Bay along the east Florida coast. In these areas, C&S energies are generated nearly equally by two mechanisms: local nonlinear interactions and energy influxes from far fields. In addition, coastline geometry exerts appreciable influence on tidal energetics. For instance, in Florida Bay a funneling effect from the convergence of opposite shorelines overwhelms the damping effect of bottom friction and enhances the local tidal range.

This study provides insight into the nonlinear tidal dynamics and energetics of Florida coastal waters.

¹ National Oceanic and Atmospheric Administration, National Ocean Service, Office of Coast Survey, Coast Survey Development Laboratory, N/CS13, 1315 East-West Highway, Silver Spring, MD 20910-3282; phone 301-713-2809; zizang.yang@noaa.gov