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Abstract 

The Storm Water Investment Strategy Evaluation (StormWISE) model is applied in Philadelphia as a 

case study in deploying green stormwater infrastructure (GSI) to reduce CSO flows.  Previous work 

reported on revisions to StormWISE�s hydrology and cost components to adapt the optimization 

model for intense urbanization in Philadelphia using EPA�s SWMM model to calculate runoff 

volume reduction from deploying GSI.  This paper further extends StormWISE�s hydrology 

components using a more detailed SWMM model and using it�s sewer flow rate time series to 

calculate annual CSO volume reductions. Analysis of results shows nonlinear hydrological response 

that be explained by exploring three different underlying physical processes that cause 

nonlinearities. A nonlinear statistical model is developed through regression analysis of the 

simulation results.  A revised StormWISE model incorporates the statistical model and applies it to 

Philadelphia�s Wingohocking sewershed to generate cost minimizing GSI deployment strategiesto 

achieve CSO reduction targets. 

INTRODUCTION 

The Storm Water Investment Strategy Evaluation (StormWISE) model (McGarity, 2012) can be used 

to develop optimal stormwater management strategies at the watershed or sewershed scale.  In 

this paper, we use StormWISE to examine optimal reduction of combined sewer overflows (CSOs).  

We present a case study in Philadelphia, where the city�s Green City Clean Waters Program is 

installing green stormwater infrastructure (GSI) practices to reduce CSO flows for compliance with 

the federal Clean Water Act.  Our case study involves Philadelphia�s Wingohocking sewershed, 

which drains into the city�s largest CSO outfall that spills overflows into Tacony Creek, a tributary of 

the Delaware Estuary.  

MATHEMATICAL FORMULATIONS OF THE OPTIMAL GSI INVESTMENT PROBLEM 

Several different methods have been proposed in the literature for selecting GSI technologies and 

deciding where to place them.  The problems they are solving can be expressed generally using one 

of two mathematical formulations: 

(1) a single cost minimization objective subject to lower bounds on multiple GSI benefits: 

 (࢞)ܿ	݁ݖ݅݉݅݊݅ܯ 

subject to: ܤ௧(࢞) ≥ ݐ ௧ forܤ ∈ ܶ 0 ≤ ࢞ ≤  ࢛
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or  

(2) multiobjective maximization of benefits subject to a budget constraint total cost: 

ݐ for	(࢞)௧ܤ]	݁ݖ݅݉݅ݔܽܯ   ∈ ܶ] 

  subject to: 

(࢞)ܿ   ≤ ܿ௫ 0 ≤ ࢞ ≤  ࢛

 

where: ࢞ = a vector of decision variable solutions specifying how much of different types of GSI to 

install in the watershed and where to place them, ࢛ = a vector of upper bounds on the GSI decision variables based on realistic constraints 

within the watershed ܿ(࢞) = a function calculating the total cost of any feasible GSI solution vector ࢞, ܿ௫= an upper bound on watershed-wide GSI investments ܶ = the set of all types of GSI benefits, hydrological, environmental, societal, etc., ܤ௧(࢞) = benefit functions expressing the level of each benefit t achieved for each decision 

variable solution ܤ ,࢞௧ = a lower bound for each benefit ݐ ∈ ܶ 

The fundamental differences among the methods applied to solve the optimization problem have 

to do with how the benefit functions ܤ௧(࢞) are expressed and evaluated.  One approach is to limit 

consideration of GSI benefits to those associated with the reduction of runoff and nonpoint 

pollutant loads.  Among these, some rely exclusively on simulation software to model the response 

of the watershed to installation of GSI (for example, Zhen, et. al, 2004 and Liu, et al., 2016).  These 

couple an evolutionary optimization engine to the simulation along with routines that calculate GSI 

costs, and solution requires many hours, even in a parallel-processor computing environment, 

limiting their application to research studies.  Another approach is to represent benefits and costs 

with mathematical functions that enable rapid solution of the problem using linear or nonlinear 

programming algorithms (for example, Perez-Pedini, 2005 and McGarity, 2012 and 2013).  

Progress is currently being made in quantifying ancillary benefits realized by neighborhoods where 

GSI practices are installed such as increases in green canopy, aesthetics, green jobs, and reduced 

stormwater fees, and mathematical benefit functions are being developed to enable solution of the 

multiobjective optimization problem (Hung, et al., 2016).   The StormWater Investment Strategy 

Evaluation (StormWISE) model that we are using to model CSO management in Philadelphia builds 

on the work of McGarity and Hung, et al. 

StormWISE Formulations. The StormWISE method can be used to solve problems for which GSI 

benefits and costs can be expressed as linear or mildly nonlinear functions.  Optimal solutions are 

obtained rapidly using widely available software such as Microsoft Excel or modeling languages 

such as AMPL and GAMS.  These features enable the kinds of interactions with decision makers and 

stakeholders that are necessary for examining tradeoffs in a multiobjective context. However, the 

approach is limited to applications for which suitable functions can be derived either from 
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theoretical considerations or, as we show in this paper, from statistical analyses of GSI cost data 

and simulation model results. 

NONLINEARITIES IN BENEFIT AND COST FUNCTIONS 

Before attempting to apply optimization to a GSI investment problem, it is necessary first to 

understand how benefits and costs vary as different numbers and sizes of different types of GSI are 

deployed to serve different kinds of landscapes.  Nonlinearities always complicate the analysis, so it 

is important to understand the types of nonlinearities that arise as well as their underlying causes.  

We identify four different types of nonlinearities affecting optimization of CSO management 

problems. 

Installation of two or more GSI practices in series can create �treatment train nonlinearities� that 

are particularly difficult for optimization when it is desired to vary the features of each practice 

independently.  Treatment trains are common in treating agricultural lands to remove nutrient 

pollution, and they may occur in urban or suburban settings as well.  However, if treatment trains 

occur in a limited number of well-specified sizes and configurations in the watershed, then each 

combination can be designated as a separate GSI practice, increasing the number of decision 

variables, but greatly decreasing the severity of the nonlinearity.  Also, in intensely urbanized areas 

such as Philadelphia, where runoff is routed to streets served by storm sewers with intakes every 

block or so, GSI practices tend to operate in parallel making interaction nonlinearities uncommon 

and therefore of minor importance. 

When GSI is used to reduce overflow spills from combined sewer systems, and one of the 

objectives is to maximize the reduction in annual CSO volumes, a different mechanism can create 

nonlinearities, even when GSI practices operate in parallel.  CSO spills into receiving waters occur 

when flow rates at CSO outfalls exceed a threshold.  These flow rates depend on arrival times of 

runoff flows originating at the various stormwater intakes throughout the sewershed.  CSO 

deployment at varying magnitudes in subcatchments at different distances from the outfall may 

significantly alter the shape of the hydrograph arriving at the outfall thereby changing the 

relationship between runoff volumes and CSO spill volumes.  This effect may be particularly 

pronounced when CSO practices such as rain barrels are widely used to store runoff and then 

overflow when capacities are exceeded.  A large precipitation event or two smaller events that 

occur within a short period of time can produce excessive spill flows leading to high peaks at the 

outfall.  We show in this paper that when large numbers of rain barrels are deployed throughout a 

sewershed, multiple overflows are likely to occur within a brief time interval leading to peak flows 

at the outfall that generate CSO spills, thereby diminishing the rain barrels� marginal effectiveness 

and, in extreme cases, actually creating increases in CSO volumes, when additional rain barrels are 

added.  This effect is a type of �hydrograph modification nonlinearity.� 

A third source of hydrological nonlinearity affecting CSO reduction benefits is also linked to sewer 

outfall hydrographs, but it will be active whether or not the shape of the hydrograph is modified by 

GSI installations, and it can occur whenever total GSI deployments begin to produce substantial 

reductions in annual CSO volumes.  The area underneath the outfall�s annual hydrograph and 

above the CSO threshold flow rate is used to calculate CSO volume for a particular year.  As the 

number of GSI installations increases, the hydrograph shrinks with each GSI increment reducing the 

area above the threshold, but the marginal reduction in this area becomes less for each increment 

because of the hydrograph�s peaked shape.  This �hydrograph threshold nonlinearity� will interact 

with hydrograph modification nonlinearities and will also depend strongly on the nature of the 

precipitation hyetograph that is typical in the climate where the watershed is located. 
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script installs a random number of GSI practices of different types into selected subcatchments.  

The 45 largest subcatchments in the model were selected to receive GSI practices.  Note that 

SWMM�s default method treats multiple GSI in each subcatchment as operating in parallel and not 

in treatment trains (EPA, 2015).  Thus treatment train nonlinearities are not present in our 

analyses, which is appropriate in intensely developed Philadelphia neighborhoods for reasons 

discussed above. 

Design specifications for units of three different types of GSI: rain barrels (RB), infiltration tree 

trenches (ITT), and rain gardens (RG), were established for the SWMM model and inserted into the 

[LID_CONTROLS] section of the input file.  We define one RB unit as a collection of several 50 gallon 

rain barrels that store the runoff from approximately five residences during a 1-inch rain event 

before overflowing.  The stored volume drains slowly to the pervious section of the subcatchment 

in which the rain barrels are installed.  The designs for the infiltration tree trenches and rain 

gardens are based on specifications widely used by Philadelphia Water.  The ITT unit is based on a 

one-block section of Lowber Avenue at Philadelphia Water�s GSI installation at Morris Leeds School, 

which is one of our subsurface monitoring sites.  The installation�s footprint is 2272 ft2 and the 

contributing impervious area is 26,850 ft2.  The RG unit is based on Philadelphia Water�s installation 

at Wakefield Park on Ogontz Ave. The installation�s footprint is 3315 ft2 and the contributing 

impervious area is 21,009 ft2. 

For our analyses, we have adopted Philadelphia Water�s metric, the �greened acre� (GA) for 

characterizing the magnitude of GSI development.  Each greened acre can manage the runoff from 

one impervious acre resulting from 1-inch of rainfall.  This metric is convenient for combining 

different types of GSI into a single measure.  Each RB unit provides 0.1 GA, each ITT unit is 0.94 GA, 

and each RG unit is 0.747 GA. 

For this study, more than 5000 SWMM simulation runs were made.  Multiple instances of SWMM 

were run in parallel on multicore CPUs on desktops and on elastic computing �cloud instances� set 

up on Amazon Web Services.  Results from each run on the various CPUs were stored together in a 

MongoDB database running on one of the cloud instances.  Each run consisted of a full-year 

simulation for a single GSI configuration.  We selected, arbitrarily, Philadelphia precipitation data 

for the year 2008 to run continuous annual simulations with a time step of 15 minutes.  Each 

simulation took about 3 minutes to complete. 

Each GSI configuration was generated by assigning random numbers of RB, ITT, and RG to each of 

the 45 larger subcatchments.  The numbers were assigned so that the total contributing impervious 

area could not exceed the actual impervious area in each subcatchment.  Also, as GSI placements 

were made, each subcatchment�s percent impervious parameters in SWMM were adjusted 

accordingly by subtracting each GSI�s footprint from the total impervious area. 

Annual CSO volumes were calculated by postprocessing the stored sewer outfall flow rate time 

series for each run.  We obtained an estimate of the threshold flow rate from engineers at 

Philadelphia Water who advised calculating this threshold by multiplying the total impervious area 

in the watershed by the sewer system�s average �wet weather treatment rate� which is 0.05 ft3/sec 

per impervious acre.  This resulted in a threshold flow rate of 156 ft3/sec.  This rate was subtracted 

from the 15 minute sewer outfall flow rate time series to generate the CSO flow rate time series, 

which was integrated to produce annual CSO volumes. 

SWMM Simulation Results For a Single GSI.   Figure 2 shows annual runoff volume reductions 

versus greened acres for each of the three selected GSI technologies for series of runs for which 

only the indicated GSI practice was installed throughout the watershed.  Each GSI was deployed to 
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Nonlinear Statistical Model for Simultaneous Multiple GSIs.  The runs shown plotted in Figure 5b 

were used as data in a second-order polynomial multivariable regression analysis to determine the 

parameters for the equation: ݕ = ߚ + ଵݔଵଵߚ + ଵଶݔଵଶߚ + ଶݔଶଵߚ + ଶଶݔଶଶߚ + ଷݔଷଵߚ +  ଷଶݔଷଶߚ

where   ݔଵ, ݔଶ, ݔଷ are the number of greened acres deployed in rain barrels, infiltration tree 

trenches, and rain gardens, respectively,  ߚ is an intercept coefficient, ߚ  for j = 1,2,3 and I = 1,2 

are the associated regression slope coefficients.  The regression analysis produced R2 near 1.0 and a 

residuals standard deviation of only 2.35 MGal. 

STORMWISE OPTIMIZATION 

Mathematical Formulation.  The statistical model developed above was incorporated into a 

StormWISE optimization formulation to solve for optimal combinations of the three GSI 

technologies that achieve the entire range of CSO reductions at minimum cost.  We use the first 

mathematical formulation of the optimal GSI investment problem shown above.  The decision 

variables are ݔଵ, ݔଶ, ݔଷ, defined above.  

The objective function minimizes total GSI investment cost.  A linear GSI cost function multiplies 

each decision variable by a cost coefficient obtained from regression analysis of recent data from 

GSI installations on private and public properties in Philadelphia.  This model, developed by our 

consultants AKRF, Inc. was fully explained in a previous paper (McGarity, et al., 2016).  The 

formulas for the cost model are repeated here in Table 1. 

Table 1: Cost Model Formulas from McGarity, et al., 2016 

Project 

Type 

Regression Model R
2
 R

2
adjusted R

2
predictive 

Private Log10(Cost/GA) = 4.98 - 0.24*Log10(GA/GSI) 

49.1% 46.9% 39.8% 

Public Log10(Cost/GA) = 5.25 - 0.24*Log10(GA/GSI) 

 

This model is currently being revised and updated using additional data that has become available 

as GSI installations in Philadelphia continue to grow.  We applied this model to obtain cost 

coefficients for the specific GSI that we used in the simulation studies.  The greened acres per GSI 

(GA/GSI) values shown above were used to in the cost model assuming that rain barrels are 

installed on private property and that infiltration tree trenches and rain gardens are installed on 

public property.  The resulting cost coefficients are $166 thousand/GA for rain barrels, $181 

thousand/GA for infiltration tree trenches, and $190 thousand/GA for rain gardens. 

The constraints consist of lower bounds of zero for all decision variables and a single inequality that 

places a lower bound on the annual CSO volume reduction using the second-order polynomial 

regression formula developed from statistical analysis of our SWMM simulations. 

Optimal Solutions Over All Feasible CSO Reduction Targets.  The StormWISE model was run 121 

times for lower bounds on annual CSO volume ranging from zero to 600 MGal in increments of 5 

MGal.  All 121 solutions were obtained in less than 5 seconds on a laptop computer.  Figure 6 

shows plots of the results indicating how total GSI investment costs increase as the CSO reduction 

target is increased.  Also, we see that the combination of CSO reduction performance factors and 
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