mean roof height =
$$10 + \frac{(16)(\tan 15^\circ)}{2} = 12.1 \, \text{ft}$$

Since K_z is constant in 0-15 ft region, from Table 6-5, $K_z = K_h = 0.70$ for Case 1 (C&C) $K_z = K_h = 0.57$ for Case 2 (MWFRS)

Velocity Pressures

 $q_z = 0.00256 K_z K_{zt} K_d V^2 I psf$ (Equation 6-13)

For MWFRS, $q_z = q_h = 0.00256 (0.57) (1.0) (0.85) (90)^2 (1.0)$ = 10.1 psf

For C&C, $q_z = q_h = 0.00256 (0.7) (1.0) (0.85) (90)^2 (1.0)$ = 12.3 psf

Gust Effect Factor

- G = 0.85 (Section 6.5.8.1)
- $(GC_{pi}) = +0.18 \text{ and } -0.18$ (Table 6-7)

Wind Pressure for MWFRS

Because of asymmetry, all four wind directions are considered (normal to walls)

The wall surfaces are numbered 1 through 6; roof surfaces are 7 through 11; porch roof surface is 12.

WIND DIRECTION A

 Wall pressures:

 Surface 1: p = 10.1 (0.85) (0.8) - 10.1 (\pm 0.18) = +6.9 \pm 1.8 psf (windward)

 Surface 2: p = 10.1 (0.85) (-0.7) - 10.1 (\pm 0.18) = -6.0 \pm 1.8 psf (side)

 Surface 3: p = 10.1 (0.85) (-0.3) - 10.1 (\pm 0.18) = -2.6 \pm 1.8 psf (leeward)

 (for L/B = 80/40 = 2; C_p = -0.3)

 Surface 4: p = -6.0 \pm 1.8 psf (side)

 Surface 5: p = +6.9 \pm 1.8 psf (windward)

 Surface 6: p = -6.0 \pm 1.8 psf (side)

<u>Roof pressures</u>: h/L = 12.1/80 = 0.15; $\Theta = 15$ degrees Surface 7: $p = 10.1 (0.85) (-0.5) - 10.1 (\pm 0.18) = -4.3 \pm 1.8$ psf (windward) Surface 8: for $\Theta = 0$ degrees; pressure varies along the roof $p = 10.1 (0.85) (-0.9) - 10.1 (\pm 0.18) = -7.7 \pm 1.8$ psf; 1 to 12.1 ft $p = 10.1 (0.85) (-0.5) - 10.1 (\pm 0.18) = -4.3 \pm 1.8$ psf; 12.1 to 24.2 ft $p = 10.1 (0.85) (-0.3) - 10.1 (\pm 0.18) = -2.6 \pm 1.8$ psf; 24.2 ft to end Surface 9: same pressures as surface 8 Surface 10: $p = 10.1 (0.85) (-0.5) - 10.1 (\pm 0.18) = -4.3 \pm 1.8$ psf (leeward) Surface 11: $p = 10.1 (0.85) (-0.5) - 10.1 (\pm 0.18) = -4.3 \pm 1.8$ psf (windward) Surface 12: same as surface 8 without internal pressure

<u>Overhang pressures</u>: At wall surfaces 1 and 5 p = 10.1 (0.85) (0.8) = +6.9 psf

Internal pressure is of the same sign on all applicable surfaces

57

WIND DIRECTION B

Wall pressures:
Surface 1: $p = -6.0 \pm 1.8 \text{ psf}$ (side)Surface 2: $p = +6.9 \pm 1.8 \text{ psf}$ (windward)Surface 3: $p = -6.0 \pm 1.8 \text{ psf}$ (side)Surface 4: $p = 10.1 (0.85) (-0.5) - 10.1 (\pm 0.18) = -4.3 \pm 1.8 \text{ psf}$ (leeward)
(for L/B = 40/80 = 0.5; $C_p = -0.5$)Surface 5: even though technically this surface is side wall, it is likely to see the same
pressure as surface 6Surface 6: same pressure as surface 4

<u>Roof pressures</u>: h/L = 12.1/40 = 0.3; $\Theta = 15$ degrees

For windward, $C_p = -0.54$ (interpolated)

For leeward, $C_p = -0.5$

For parallel to ridge, $C_p = -0.9$, -0.5, and -0.3

Surface 7: same pressures as surface 8 for Wind Direction A

Surface 8: $p = 10.1 (0.85) (-0.54) - 10.1 (\pm 0.18) = -4.6 \pm 1.8 \text{ psf}$ (windward)

Surface 9: $p = 10.1 (0.85) (-0.5) - 10.1 (\pm 0.18) = -4.3 \pm 1.8 \text{ psf}$ (leeward)

Surface 10: same pressures as surface 8 for Wind Direction A

Surface 11: same as surface 9 because it is sloping with respect to ridge

Surface 12: This surface is at a distance greater than 2h

p = 10.1 (0.85) (-0.3) = -2.6 psf; no internal pressure

Overhang pressures: At wall surface 2

p = 10.1 (0.85) (0.8) = +6.9 psf

Internal pressure is of the same sign on all applicable surfaces

WIND DIRECTION C

Wall pressures:

Surface 1 and 5: $p = -2.6 \pm 1.8 \text{ psf}$ (leeward) Surface 2, 4, and 6: $p = -6.0 \pm 1.8 \text{ psf}$ (side) Surface 3: $p = +6.9 \pm 1.8 \text{ psf}$ (windward)

Roof pressures:

Surface 7 and 11: $p = -4.3 \pm 1.8$ psf (leeward)

Surface 8 and 9: pressures vary along the roof; same pressures as surface 8 for Wind Direction A Surface 10: p = -4.3 + 1.8 psf (windward)

Surface 12: same pressures as surface 9 without internal pressures

Overhang pressures: At wall surface 3

p = 10.1 (0.85) (0.8) = +6.9 psf

Internal pressure is of the same sign on all applicable surfaces.

WIND DIRECTION D

Wall pressures:Surface 1 and 3: $p = -6.0 \pm 1.8 \text{ psf}$ (side)Surface 2: $p = -4.3 \pm 1.8 \text{ psf}$ (leeward)Surface 4, 5, and 6: $p = +6.9 \pm 1.8 \text{ psf}$ (windward)

Roof pressures:

Surface 7, 10, and 11: pressures vary along the roof; same pressures as surface 8 for Wind Direction A

Surface 8: $p = -4.3 \pm 1.8 \text{ psf}$ (leeward)

Surface 9: $p = -4.3 \pm 1.8 \text{ psf}$ (windward)

Surface 12: This surface will see pressures on top and bottom surfaces; they will add algebraically.

For $\Theta = 0^{\circ}$, h/L < 0.5, C_p = -0.9 p = 10.1 (0.85) (-0.9) - 10.1 (0.85) (+0.8) = -14.6 psf uplift

Overhang pressures: At wall surfaces 4, 5, and 6

p = 10.1 (0.85) (0.8) = +6.9 psf

Internal pressure is of the same sign on all applicable surfaces.

Components and Cladding

Wall Component:

Wall studs are 10 ft long and spaced 16 in. apart. Effective area = larger of $10 \ge 1.33 = 13.3$ sq ft or $10 \ge 10/3 = 33.3$ sq ft (controls)

From Figure 6-5a, Equations in Chapter 2 are used

(GC_p) = +0.91 for Zones 4 and 5 (GC_p) = -1.01 for Zone 4 (GC_p) = -1.22 for Zone 5

Distance 'a' = smaller of 0.1 (40) = 4 ft (controls) or 0.4 (12.1) = 4.8 ft

Design pressure p = 12.3 (0.91 + 0.18) = +13.4 psf (all walls) p = 12.3 (-1.01 - 0.18) = -14.6 psf (middle) p = 12.3 (-1.22 - 0.18) = -17.2 psf (corner)

Roof component:

Roof trusses are 32 ft long and spaced 4 ft apart. Effective area = larger of $32 \ge 4 = 128$ sq ft or $32 \ge 32/3 = 341$ sq ft (controls)

From Figure 6-5b for $\Theta = 15^{\circ}$

 $(GC_p) = +0.3$ for Zones 1, 2, and 3 $(GC_p) = -0.8$ for Zone 1 $(GC_p) = -1.4$ for Zones 2 and 3

Distance 'a' = smaller of 0.1 (40) = 4 ft (controls) or 0.4 (12.1) = 4.8 ft

Design pressures

$$p = 12.3 (0.3 + 0.18) = +5.9 \text{ psf (all zones)}$$

$$p = 12.3 (-0.8 - 0.18) = -12.1 \text{ psf (middle roof)}$$

$$p = 12.3 (-1.4 - 0.18) = -19.4 \text{ psf (edges of roof)}$$

Overhang pressures to be used for reaction and anchorage

$$p = 12.3 (-2.2 - 0.18) = -29.3 psf (edge of roof)$$

 $p = 12.3 (-2.5 - 0.18) = -33.0 psf (roof corners)$

Roof Panels

Effective area = $4 \times 8 = 32$ sq ft

From Figure 6-5b for $\Theta = 15^{\circ}$ (note: Zones 2 and 3 are overhang) (GC_p) = +0.4 for Zones 1, 2, and 3 (GC_p) = -0.85 for Zone 1 (GC_p) = -2.2 for Zones 2 (with overhang)

 $(GC_p) = -3.1$ for Zone 3 (with overhang)

Distance 'a' = smaller of 0.1 (40) = 4 ft (controls) or 0.4 (12.1) = 4.8 ft

Design pressures

p = 12.3 (0.4 + 0.18) = +7.1 psf (all zones) p = 12.3 (-0.85 - 0.18) = -12.7 psf (middle roof) p = 12.3 (-2.2 - 0.18) = -29.3 psf (edges of roof)p = 12.3 (-3.1 - 0.18) = -40.3 psf (roof corners)

3.6 Example 6 – House of Example 5 on an Isolated Hill

In this example, the one-story house of Example 5 is placed on a hill to illustrate the effect of topography. It is only necessary to calculate velocity pressure, q_z , and compare with the value of Example 5.

The data for the house are the same as Example 5. The parameter of significance is the mean roof height, which is h = 12.1 ft.

The topography dimensions of a 3-D axisymmetrical hill are as shown:

Figure 3.6.1 One-Story House on a Hill

Basic Wind Speed, Exposure, Classification

Same as Example 5: Basic wind speed, V = 90 mph Category II, I = 1.0 Exposure B, $K_z = K_h = 0.57$ for Case 2 (MWFRS) $K_h = 0.7$ for Case 1 (C&C) Directionality factor, $K_d = 0.85$ Classification: Enclosed

Determination of K_{zt}

The topographic effect is applicable only when the following conditions are met, see Section 6.5.7.1:

- 1. The hill is isolated and unobstructed upwind by similar topographic features for a distance of the larger of $100 \times H = 15,000$ ft (controls) or two miles.
- 2. There are no hills higher than 75 ft for a distance of two miles.
- 3. The building is located in the upper one-half of the hill.
- $4. \quad H/L_h = 150/600 = 0.25 \geq 0.2$
- 5. H = 150 ft > 60 ft for Exposure B

Topographic factor $K_{zt} = (1 + K_1 K_2 K_3)^2$ (Equation 6-1)

(Figure 6-2)

For
$$H/L_h = 0.25$$
, x = 250 ft and Exposure B

$$K_1 = (0.95) (0.25) = 0.24$$

1(10) (

$$\mathbf{K}_2 = \left(1 - \frac{250}{(1.5)(600)}\right) = 0.72$$

$$K_3 = e^{-4(15)/600} = 0.90$$
 (z is taken as 15 ft to be consistent with K_z)

$$K_{zt} = [1 + (0.24) (0.72) (0.90)]^2 = 1.33$$

Velocity Pressure

$$q_{z} = 0.00256K_{z}K_{zt}K_{d} V^{2} I$$
(Equation 6-13)
= 0.00256 (0.57) (1.33) (0.85) (0.90)² (1.0)
= 13.4 psf

Assessment of Topographic Effect

The velocity pressure (hence, design pressure) increases by 33% (13.4 psf versus 10.1 psf) for MWFRS when the house is located on the hill. The velocity pressure increase for C&C will also be 33%. The increase would be 48% if the house were located at the crest of the hill.

3.7 Example 7 – 200 ft x 250 ft Gable Roof Commercial/Warehouse Building Using Rigid Buildings of All Height Provisions

In this example, design wind pressures for a large, one-story commercialindustrial building are determined. The building data are as follows:

Location:	Memphis, Tennessee
Terrain:	Flat farmland
Dimensions:	200 ft × 250 ft in plan
	Eave height of 20 ft
	Roof Slope 4:12 (18.4 degrees)
Framing:	Rigid frames span the 200 ft direction
	Rigid frame bay spacing is 25 ft
	Lateral bracing in the 250 direction is provided by a "wind truss"
	spanning the 200 ft to side walls and cable/rod bracing in the
	planes of the walls
	Girts and purlins span between rigid frames (25 ft span)
	Girt spacing is 6 ft 8 in.
	Purlin spacing is 5 ft
Cladding:	Roof panel dimensions are 2 ft wide
	Roof fastener spacing on purlins is 1 ft on center
	Wall panel dimensions are 2 ft \times 20 ft
	Wall fastener spacing on girts is 1 ft on center
	Openings are uniformly distributed

Figure 3.7.1 Dimensions and Framing of the Building of Example 7