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3.2.1 Taylor diagram based overall model performance 

Taylor diagram highlights both model selection uncertainty and fitting performance. Figure 8 

shows the Taylor diagrams for three cases, where the best-fit models according to Z-test show 

different performances, including: i) all of the top three distributions are performing similarly, ii) 

there is a relatively bad performing distribution in the top three, and iii) the best-fit (Rank-1) 

distribution is not the best in terms of the Taylor diagram. Considering these cases allows us to 

evaluate the BMA performance under different plausible scenarios of distributions combination, 

and examine whether there will be cases where the BMA would be less desirable compared to 

the best-fit distribution. 

The results in all of the three cases suggest that BMA provides better overall performance for 

the majority of the datasets - 70% of the total, compared to the best-fit distributions (Figure 9). 

As Figure 9 shows for the cases where BMA is not better than the best-fit distribution, the 

difference between them is not big. Figure 8-a shows that all distributions are performing almost 

equally well, and the BMA does not show much difference from the pooled distributions. In this 

case, in the absence of an outright best or worst model, making a consensus prediction using 

BMA is reasonable than relying on a single distribution. Figure 8-b shows that the performances 

of BMA and best-fit distribution are similar and close to the observed data. The result of the 

BMA is not affected by the inclusion of the lower ranked distribution(s). The prior that embodies 

the ranks of the distributions and the likelihood of Rank-1 distribution prevents BMA from 

drifting to the low performing distributions by providing more weight to Rank-1 distribution. 

Figure8-c shows that the Rank-1 distribution and BMA performances are different. In this case 

BMA mostly prefers the alternative distributions than the Rank-1 distribution according to the 

metrics considered under Taylor diagram. Here, the likelihood in BMA has more effect than the 

prior in combining the distributions. Partly, the difference is because of the use of Z-test for 

selection of distribution, which uses higher order moments - skewedness and kurtosis of the data, 

while the Taylor diagram is based on second order moment. There are 305 instances where 

Rank-1 is not better than Rank-2 or Rank-3 when Taylor diagram is used as a performance 

measure. Under this condition, in 95% of the cases BMA improves the performance of Rank-1 

distribution in terms of Taylor diagram. Thus, in this case the preferred solution is to consider the 

result of the averaged consensus. 

 
Figure 9. Summarized Taylor diagram result of the BMA and Rank-1 distribution. Cluster 

3 indicates cases where the Rank-1 model is not better than Rank-2 in terms of Taylor 

diagram. 

The visual interpretation represented under Taylor diagram implicitly evaluates the distances 

from the alternative distributions to the observed data. The shorter the distance, the preferred the 

alternative. This distance has three components, measuring: a) how close is the distribution 
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correlation coefficient to one, b) how close is the standard deviation to the observed standard 

deviation, and c) how small is the centered root mean square error. In order to quantitatively 

represent the Taylor diagram, we have summarized these three components as: 

  2
1  

obs dist
Ty r CRMS        (11) 

where Ty  is the summarized metrics of Taylor diagram and 2
r  is the correlation coefficient. 

Figure 9 presents the summarized Taylor diagram metrics (Equation 11) comparing Rank-1 

and BMA for all the datasets considered. The figure shows that the performances of the BMA 

and Rank-1 distribution are similar, i.e. most of the points are aligned on the diagonal indicating 

BMA tends to favor Rank-1 distribution. Overall, the BMA has improved the performance of 

Rank-1 as there are more points above the diagonal line. In addition, the points that are above the 

diagonal are scattered relatively farther from the diagonal than those few points below the 

diagonal, indicating the BMA does not severely degraded the performance of the Rank-1. 

 
Figure 10. BMA vs. Rank -1 model comparison based on Anderson – Darling performance 

measure. 

3.2.2 Result based on Anderson Darling (AU) 

The lower the value of AU the preferred the distribution in representing extreme events. 

Figure 10 shows that the performance of BMA is mostly dictated by Rank-1 distributions, as 

most of the data points lie along the diagonal. However, the figure also shows that BMA has 

performed better than Rank-1 as there are higher number of data points above the diagonal. 

3.2.3 Verification of BMA predictive capacity 

The bootstrap tests are performed for predicting the five most extreme events. The result of 

the bootstrap test suggests that BMA has an overall similar predictive performance with the 

Rank-1 distributions (Figure 11 a-c). The predictive accuracy (Figure 11b) is calculated as the 

root mean squared difference between the median and the observed five extremes while the 

predictive uncertainty (Figure 11c) is calculated by a total sum of the difference between the 

75% and 25% intervals. In addition to Rank-1 and BMA, we have analyzed the predictive 

performance of one un-pooled distribution (Beta-K) to illustrate the effectives of ranking based 

on Z-test. 

As shown in Figure 11a, the line fitted to the five extremes fall within the 25% and 75% 

bands and is close to the median values for the BMA and Rank-1 distribution. On the contrary, 

the fit for the un-pooled model lies far from the median and is not enclosed by the 25% and 75% 

bands. The accuracy (Figure 11b) and uncertainty (Figure 11c) summary for the nine stations 

also showed that the un-pooled model (Beta–K) has a poor accuracy compared to both Rank-1 
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and BMA when it is not part of the top three pooled models. Beta-K was not ranked as the top 

model in 6 out of 9 cases, and in those cases, its predictive accuracy is lower than BMA and 

Rank-1 distribution. This highlights the usefulness of Z-test results for ranking the distributions 

and its use as a prior in the Bayesian augmentation of the L-moment approach. In terms of 

uncertainty, BMA has an identical level of uncertainty to Rank-1 and Beta-K distributions 

(Figure 11c). This is because BMA based uncertainty has as its lower limit the uncertainty band 

corresponding to the least uncertain distribution among the three distributions and mostly follows 

rank-1 distribution. 

 
Figure 11. Bootstrap based accuracy and confidence intervals for the 9 stations with record 

lengths longer than 80 years. a) Whisker plot showing accuracy and uncertainty, b) 

comparison of accuracies of the distributions in terms of root mean square error, and c) 

comparison of uncertainties computed based on the 25% and 75% quantiles. 

Based on the different performance measures used in this study, BMA has proved to be 

effective in characterizing extreme events compared to most of the best-fit distributions ranked 

by Z-test or any model that has a lower rank (un-pooled) which can be recommended. The 

improvement is attributed to both the likelihood, and the use of prior and ranking under Z-test. 

3.3 Implications to IDF 

Intensity (or Depth) duration frequency (IDF) curves, are standard tools used for representing 

the interplay among extreme event magnitudes, return periods and the durations of interest. 

https://www.civilenghub.com/ASCE/155733469/WEWRC-2018-Groundwater-Sustainability-and-Hydro-Climate-Climate-Change?src=spdf


World Environmental and Water Resources Congress 2018 178 

© ASCE 

Figure 12 shows the implication of uncertainty on DDF curves that leads to overlap of the DDF 

curves. It indicates that the 95% upper limit for the 50 year return period curve is intersecting 

within the 100 year return period 95% credible interval. This could have implications on design 

specifications that need due consideration. Presenting both parameter and model uncertainty 

confidence bands developed along with the IDF or DDF curves allows a transparent decision 

making that acknowledges uncertainty and its sources. This benefits an informed design in 

applied hydrology complementing the safety factor concept to uncertainty quantification which 

is not transparent enough to quantify and associate the uncertainty sources. 

 
Figure 12. Implication of uncertainty analysis on Depth Duration Frequency (DDF) curves 

at station USC00279940. 

4. SUMMARY AND CONCLUSION 

Although any single distribution can be a good fit, this study has rather shown that at any site 

it is not always clear that a single distribution could be an outright best choice. Instead a 

Bayesian augmented consensus prediction is found out to be a better alternative as diagnosed by 

multiple efficiency measures that probe the overall performance, extreme events, and predictive 

capacity based on a wide range of data. The standard L-moment based scheme in RFA has an 

obvious practicality for its ease of application, less sensitive to outliers and sampling variability. 

The core deficits of the method are, however, it can still be influenced by outliers and is reliant 

on a single statistic particularly in model selection. In addition the scheme has no direct approach 

to address parameter uncertainty. Therefore, to better enable decision making, avoiding 

overdesign or risk of failure, it is essential to build on the success of L-moment approach through 

Bayesian statistics aided by multiple performance measures. 

In the Bayesian augmented L-moment approach, any distribution can be ranked based on Z-

test, and pooled together. As a result, the limitation of any single model can be improved by the 

additional skill drawn from the alternative pooled distributions. Moreover, the use of L-moments 

in ranking and as a prior for the Bayesian approach preserve the benefit of L-moment approach 

to RFA. In parameter estimation, the Bayesian framework has delivered not just the optimal 

parameter estimate, but also directly the associated parameter posterior distribution. 
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ABSTRACT 

Weather generation models based on multivariate censored distribution (WG-MCD) and 

multivariate autoregressive censored process (WG-MACP) have been developed and presented 

in the paper entitled “Stochastic Simulation of Daily Precipitation at Multiple Sites: I Model 

Development”. In this paper, the performance of these models is evaluated by comparing 
discrepancies in attributes (e.g., mean, variance, correlation) obtained from the historical and 

simulated precipitation. Precipitation records from years 1961–1990 at ten climatic stations 

located in Manitoba, Canada, are adopted for the performance evaluation of models. Three 

performance measures (i.e., the coefficient of determination, the coefficient efficiency, and the 

root mean square error) identify a fairly strong relationship between the historical and simulated 

precipitation. Proposed models has been found to be suitable for reproducing the statistical 

characteristics of daily historical precipitations at multiple sites. The spatial and temporal 

dependencies appear to have been reasonably captured by the covariance and lag-1 covariance of 

the WG-MACP model. Other descriptors, such as probabilities of wet/dry-day, mean values, and 

variances, show good statistical agreement with similar statistical characteristics of the historical 

and simulated data sets. It was found that a better performance of the model could be obtained 

with use of a smaller number of stations, and with less number of statistical attributes to be 

preserved. 

INTRODUCTION 

Records of daily precipitation are probably the most extensively used data in environmental, 

climatological, hydrological, and water resources studies. For example, conducting a flood risk 

analysis for a river requires comprehensive historical river flow records, but availability of 

records may be limited in length. In such cases, rainfall-runoff models are required to provide the 

river flow information through the input of precipitation data. Precipitation series at times are too 

short or contain missing records, thus making reliable and meaningful analyses difficult. In such 

situations, stochastic precipitation generation models can be a great asset in providing alternate 

precipitation series that are consistent with the observed characteristics of the historical 

precipitation records. 

When multiple sites are considered, a multivariate stochastic model is needed to generate the 

weather that should recognize the spatial and temporal variation of daily precipitation. 

Precipitation modeling at multiple sites is a challenging task due to difficulties in modeling the 

spatial dependence of precipitation amounts that have mixed distributions (i.e., consisting of 

discrete zero for dry-day and distributed as continuous function for above-zero records for wet-

day). 
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In the accompanying paper entitled “Stochastic Simulation of Daily Precipitation at Multiple 
Sites: I Model Development", an alternative approach utilizing the concept of a multivariate 

censored distribution for the estimation of spatial dependence of daily precipitation was 

proposed. Weather generation models based on multivariate censored distribution and 

multivariate autoregressive censored process (WG-MCD and WG-MACP) have been developed. 

In this paper, the adequacy of multivariate censored normal distribution (MCD) is first verified 

and validated, and the performance of WG-MCD and WG-MACP models are then evaluated. 

Since both generation models (i.e., WG-MCD and WG-MACP) share a core probability 

distribution structure of MCD, the correctness of computer coding and the adequacy of this 

component is first examined. Secondly, the performance in terms of preserving the statistical 

characteristics of the historical precipitation of the WG-MCD and WG-MACP models were 

compared. Further, a sensitivity analysis was conducted to evaluate the capability of models in 

handling a large number of variables. Therefore, this paper consists of four sections: (1) 

Validation of the MCD, (2) comparative analysis of the WG- MCD and WG-MACP models, and 

(3) Sensitivity analysis of different number of variables and their impact on parameter 

estimation. 

STUDY AREA AND RELEVANT DATA SET 

For the validation and rest of the section, a historical precipitation records was used. Daily 

precipitation records from year 1961 to 1990 from 10 stations located in southern Manitoba, 

Canada, were utilized. Availability of sufficient and reliable daily precipitation data is the reason 

for the selection of this region for the analysis. Ten stations along with pertinent information are 

described in Table 1. Stations 1 to 7 are located inside the Red River Basin, station 8 is located in 

the Assiniboine River Basin, and stations 9 and 10 are located inside the Winnipeg River Basin.  

Precipitation records were obtained from the Canadian Daily Climate Data 2002 West CD-

ROM [3]. Daily precipitation records obtained from the period between 1961 and 1990 is 

common in precipitation and climate change studies, as it is neither too short, nor too recent to 

include a strong global change signal [6]. With 30 years of daily precipitation records, a sample 

size of 30 is available to estimate the parameters for each Julian day at each station. 

Table 1. Geographical information on selected stations. 

Station Name Station Number Latitude Longitude Elevation (m) 

1 Deer Wood 5020720 49.4N 98.9W 338 

2 Emerson 5020880 49.4N 97.2W 238 

3 Morden 5021848 49.1N 98.5W 298 

4 Plum Coulee 5022245 49.3N 97.8W 265 

5 Steinbach 5022780 49.2N 96.6W 254 

6 Altona 5020040 49.6N 97.3W 248 

7 Morris 2 5021965 49.6N 97.9W 238 

8 Minnedosa 5011760 50.6N 99.0W 521 

9 Beausejour 5030160 50.2N 96.8W 251 

10 Arborg 5030080 50.8N 96.3W 302 

At 10 stations with 30-years records, a total of 109,575 daily precipitation records were 

available for the analysis. Of these, 29,069 (27%) records are above zero; 75,986 (69%) records 

are zeros, and 4,520 (4%) records are missing. The number of above-zero records and 
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probabilities of dry-day were used for the estimation of parameters (mean vectors and correlation 

matrices) of the MCD and its variant forms. 

Table 2. Annotation of types of data used for the calculation of attributes. 
Notation Description 

MCD(m) Refers to the multivariate censored normal distribution generated by the 

MCD, in which attributes (e.g., μ and σ) have been estimated using the 

historical data as input. The distribution consists of negative and positive 

values. Such attributes can also be calculated using a sufficient size of 

simulated data generated by the MCD. 

MCD(s) Refers to the right portion of a truncated point under a multivariate 

censored normal distribution generated by the MCD, in which s denotes 

that attributes have been calculated using the simulated data generated 

by the MCD. The distribution only consists of above-zero values (wet 

day) that has been back transformed by the inverse of power 

transformation. 

MCD(m,l) 

or MCD(s, 

1) Equivalent to the MCD(m) or MCD(s) except the MCD does not involve 

the use of the periodic function. 

Notes: Annotation is not only restricted to MCD, but also applicable to the 

WG-MCD and WG-MACP models to be discussed in the following 

section. 

VALIDATION OF THE MCD 

After the parameters of MCD have been estimated, a string of say 1,000 normally distributed 

numbers can be generated. The negative values can be discarded and positive values are retained. 

The positive values can be back transformed (through the inverse of power transformation). The 

distribution obtained from the above simulation route is designated as MCD(m,1). Table 2 gives 

the notation conventions for MCD(.). The mean and variance of this simulated data can be 

estimated from the back transformed positive values. 

 
Figure 1: Observed and estimated probability distributions of MCD for the month of 

January. 

For a good simulation, the mean and variance of the observed and simulated data should 

show 1:1 correspondence. The MCD seems to provide satisfactory results as the observed and 

simulated parameters are in close proximity of each other. Another example is illustrated in 
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Figure 1 using daily precipitation data for all stations for the month of January. The distribution 

of actual precipitation is displayed through histograms, whereas the simulated counterparts are 

shown by the dashed curve generated by the MCD(m,1). The close correspondence between 

observed histograms and simulated curves is a good evidence of the capability of the MCD to 

simulate the frequency distribution of the daily precipitation data. 

Table 3. Results summary of two-sample Kolmogorov-Smirnov test.  

Level of Significance (P-values) 

     Station     

Month 1 2 3 4 5 6 7 8 9 10 

Jan 0.37 0.23 0.34 0.18 0.32 0.27 0.37 0.48 0.15 0.17 

Feb 0.24 0.32 0.22 0.52 0.53 0.20 0.15 0.37 0.12 0.28 

Mar 0.23 0.49 0.36 0.31 0.52 0.30 0.41 0.31 0.25 0.40 

Apr 0.35 0.70 0.46 0.58 0.65 0.54 0.64 0.60 0.23 0.47 

May 0.19 0.52 0.21 0.40 0.67 0.54 0.50 0.44 0.42 0.52 

Jun 0.51 0.60 0.59 0.52 0.55 0.58 0.49 0.44 0.51 0.35 

Jul 0.44 0.49 0.57 0.46 0.50 0.40 0.48 0.42 0.34 0.46 

Aug 0.42 0.11 0.39 0.23 0.41 0.50 0.21 0.43 0.35 0.53 

Sep 0.47 0.60 0.46 0.40 0.22 0.32 0.35 0.55 0.18 0.06 

Oct 0.39 0.42 0.36 0.31 0.30 0.39 0.50 0.42 0.28 0.29 

Nov 0.23 0.36 0.31 0.35 0.40 0.22 0.31 0.43 0.26 0.30 

Dec 0.24 0.42 0.13 0.34 0.44 0.08 0.37 0.34 0.11 0.33 

Table 4. Results summary of Mann-Whitney U-test.  

Level of Significance (P-values) 

     Station 5     

Month 1 2 3 4 5 6 7 8 9 10 

Jan 0.53 0.54 0.58 0.48 0.44 0.50 0.54 0.42 0.54 0.34 

Feb 0.13 0.48 0.15 0.51 0.63 0.56 0.13 0.54 0.15 0.27 

Mar 0.33 0.49 0.48 0.59 0.59 0.52 0.42 0.39 0.40 0.56 

Apr 0.51 0.60 0.56 0.50 0.56 0.47 0.60 0.59 0.15 0.57 

May 0.32 0.55 0.40 0.39 0.58 0.58 0.51 0.53 0.34 0.59 

Jun 0.55 0.55 0.60 0.55 0.58 0.55 0.57 0.51 0.58 0.44 

Jul 0.53 0.46 0.49 0.41 0.54 0.53 0.40 0.51 0.50 0.57 

Aug 0.50 0.30 0.55 0.41 0.46 0.47 0.45 0.55 0.46 0.51 

Sep 0.58 0.58 0.57 0.33 0.30 0.20 0.24 0.52 0.24 0.21 

Oct 0.44 0.57 0.54 0.23 0.42 0.31 0.55 0.33 0.39 0.42 

Nov 0.54 0.30 0.45 0.55 0.52 0.55 0.54 0.56 0.34 0.37 

Dec 0.25 0.46 0.09 0.56 0.49 0.09 0.51 0.46 0.15 0.57 

For the K-S and M-W based null hypothesis tests, when the P-value is less than 5%, the null 

hypothesis is rejected in this case study. The tests were performed on the daily data within a 

specific month and at a specific site, corresponding to MCD simulations and historical 

observations. The calculated P-values of the K-S and M-W tests are respectively reported in 

Tables 3 and 4. Each P-value reported in the tables is essentially the average of the P-values 

corresponding to the number of days in a specific months at a specific location. Each of these 

values is calculated based on the empirical distribution functions of observations and simulations 
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