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3 Scale Effects in Creep Parameters 

A series of in-situ creep were conducted on claystone specimens in order to inves- 

tigate the influence of scale effects on creep parameters. The experimental setup 

for these tests is similar to the one shown in Figure 1, with variable specimen 

sizes from 10 x 10 x 10cm a to 100 • 100 x 100cm a. The experimental results 

are shown in Figure 4, where creep parameters are normalized against the number 

of rock blocks or the overall size of the specimens. The following relations are 

obtained from the experimental results: 

(1) Scale Effeets on Initial Creep Stresses. As shown in Figures 4(a) and (e), 

the scale effect on initial creep stresses is defined as 

{ ~__zi_ = 1.8023N-O.496o 
",'~- (1) 

= 3.8106L -0-5699 
o'ima~ 

where ai and aima= are, respectively, the initial creep stress for the fractured 

rock mass and the initial creep stress for the intact rock; N and L are, re- 

spectively, the number of rock blocks contained in a rock specimen and the 

overall size of that specimen. 

(2) Scale Effects on Failure Creep Stresses. As shown in Figures 4(b) and (f), 

the scale effect on failure creep stresses is defined as 

{ ~.._e~_ = 2.3852N-O.60o2 
..... (2) 

= 4.4575L -o.6354 
O'ernax 

where ac and a~,~a= are, respectively, the failure creep stress for the frac- 

tured rock mass and the failure creep stress for the intact rock. 

(3) Scale Effects on Deformation Moduli. As shown in Figures 4(c) and (g), 

the scale effect on deformation moduli is defined as 

E~ = 9"0806N-H58s 

E~o= = 50"0740L-l"a544 (3) 

where E and Era.= are, respectively, the deformation modulus for the frac- 

tured rock mass and the deformation modulus for the intact rock. 

(4) ScaleEffects on Viscosity Coefficients. As shown in Figures 4(d) and (h), 

the scale effect on viscosity coefficients is defined as 

~ = 13.9320N -k61~0 
"'"" (4) 

= 25.0730L -L3~55 
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Figure 4: Scale effects in the creep parameters of fractured rock masses. The ef- 

fect of the number of rock blocks on the initial creep stress, failure stress, elastic 

modulus and viscosity are shown in figures (a) through (d). Effects of the speci- 

men sizes on the initial creep stress, failure stress, elastic modulus and viscosity 

are shown in figures (e) through (h). 
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Figure 5: Comparison of failure modes between pre- and post-creep tests under 

different scales. 

where r/and ~/,~ are, respectively, the viscosity coefficient for the fractured 

rock mass and the viscosity coefficient for the intact rock. 

Relations, 1 through 4, may be defined, in a unified form, as 

CP _ AS_ B (5) 
C P,~a~ 

where CP and CPmax are creep parameters (ai, ac, E, and r/, or Crimaz, acmaz, 

Ema~, and 7/ma~); A and B are constants, and S is the number of rock blocks 

contained in a rock specimen or the overall size of that specimen. 

4 Scale Effects in Creep Failures 

A series of creep tests were conducted to investigate scale effects on creep failure 

modes of rock masses. The sizes of five creep test specimens, as shown in Fig- 

ure 5, are 10 x 10 • 10cm 3 (No.l), 20 • 20 • 20cm 3 (No.2), 30 x 30 x 30cm 3 

(No.3), 70 • 70 • 70cm 3 (No.4), and 100 • 100 • 100cm 3 (No.5). The num- 

ber of fractures in the specimens increase with increasing specimen size. Among 

them, specimen No.1 contains no fractures, and the resulting failure mode is ten- 

sile fracturing; specimen, No.2, contains only one fracture, and the resulting fail- 

ure mode is tensile fracturing through this pre-existing fracture; specimens, No.3 

and No.4, contain a number of well-connected fractures, and the failure modes 

are flow-sliding through the pre-existing fractures; specimen, No.5, has the es- 

sential characteristics of the sampled rock mass, with fractures (NE80~ ~ 
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NW40~ ~ and NElO~ ~ forming a plane of slippage. The sliding 

is towards NE25 ~ with a plunge of 240 below the horizontal, resulting in a failure 

mode representing differential flow-failure. 

The experimental results, as shown in Figure 5, indicate that rock masses, 

sampled at different scales, may fail under different mechanisms and modes. This 

results from the different number of fractures present within the sampled volume, 

their mixed strength and geometric characteristics, and the additional degrees of 

freedom that this affords the failure process. 

5 Conclusions 

Three types of scale effects have been studied in this work to define the influence 

of creep deformation on the failure of fractured rock masses. These are: 

(1) Scale effects on creep failure mechanisms; 

(2) Scale effects on creep parameters; 

(3) Scale effects on creep failure modes. 

Caution should be applied when using the upscaling rules, developed in this study, 

in other situations. In particular, attention should be paid to the type of rock, and 

to the experimental conditions. 
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Crack Kinematics of Rock-Like Materials by Quantitative Acoustic Emission 

MasayasuOhtsu 

Abstract 

The moment tensor corresponding to acoustic emission (AE) source contains 

kinematical information on crack motion in a material. In order to determine the 

moment tensor components from AE waveforms, the SIGMA (simplified Green's 

functions for moment tensor analysis) procedure is developed, where AE sources can be 

located, classified into tensile cracks and shear cracks, and then the directions of crack 

motions are determined. 

In the present paper, the SIGMA procedure is further extended in rock-like 

materials, and a crack micrograpy is proposed. To this end, a relation between a 

damage parameter in damage mechanics and the moment tensor is clarified. Thus, 

damage evolution of the notched beam under bending is estimated from the trace 

components of the moment tensor. The scalar damage parameter is closely related 

with the crack density consisting of the crack volume. Therefore, the crack volumes 

are quantitatively estimated in uniaxial compression tests of plate specimens with a slit. 

In the linear elastic fracture mechanics (LEFM), the direction of crack extension can be 

determined from the concept of the maximum circumferential stress Since the 

direction of crack motion can be derived from the eigenvectors of the moment tensor, the 

relation is applied to estimate the normalized stress intensity factors 

Introduction 

Acoustic emission (AE) is defined as the generation of elastic w~wes due to 

cracking in materials�9 Therefore, AE techniques are extensively applied to detect 

cracks for inspection and to do research on failure mechanisms. Theoretical research 

of AE has been conducted on the basis of the elastodynamics and the dislocatior~ theory. 

Thus, a generalized theory is presented by Ohtsu and Ono (1984) AE waves are, in 

principle, generated by crack motions, which correspond to AE sources. In this case, 

crack dynamics normally consists of crack kinetics and crack kinematics. The former is 

represented by the source time function which can be determined from the 

deconvolution analysis. The latter is associated with the moment tensor. In order 

to determine the moment tensor components from AE waveforms, a simplified and 

stable procedure is developed as a SIGMA procedure by Ohtsu (1991). 
............................. 
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Crack kinematics obtained from the moment tensor readily lead to micrographical 

approach of nucleated cracks. Thus, the SIGMA procedure is further extended in rock- 

like materials, and a crack micrograpy is proposed here. The classification of crack 

type and the determination of crack orientation are discussed on the basis of the 

eigenvalue analysis of the moment tensor. From the continuous damage mechanics by 

Kachanov (1992), a relation between a damage parameter and the moment tensor 

components is studied. Then, the crack volume is quantitatively estimated in 

combination with AE sensor calibration. The maximum circumferential stress concept 

in the linear elastic fracture mechanics (LEFM) dictates a relation between the 

direction of crack extension and the stress intensity factors. Consequently, the crack 

orientation analyzed by the SIGMA is attempted to be applied to estimate the 

normalized stress intensity factors 

t'rocedure./'or Micrography 

( 1 ) SIGMA 

Crack motion vector b(y,t) at AE source can be defined on crack surface F along 

with crack normal vector n. As shown in Fig. 1, this crack motion is equivalently 

represented by moment tensor, m. Mathematically, crack motion vector at point y is 

set to be equal to b(y)lS(t), where b(y) represents the magnitude of crack displacement, ! 

is the direction vector of crack motion b, and S(t) is the source-time function. Then, 

the following integration over the crack surface F leads to moment tensor, mpq, 

,~' F Cpqkl [b(y)lkS(t)] nl dS = [Cpqkllknl] [ ,J" vb(y) dS]S(t) 

= [Cpqkllknl] AV S(t) = mpq S(t), (1) 

where Cpqkl is the tensor of elastic constants and AV is the crack volume. As seen in 

eq. 1, the moment tensor has the dimension of moment [Nm], because of [elastic 

constants: N/m 2] times [crack volume: m3]. 

elastic displacement u(x,t) is represented as, 

b 

Crack motion 

Corresponding to AE wave motion, 

Moment tensor components 

Figure 1. Crack motion and moment tensor 
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ui(x,t) = Gip.q(X,y,t) mpq *S(t). (2) 

Here G,p.q(x,y,t) is the spatial derivatives of Green's functions and the asterisk * denotes 

the convolution operation. In the SIGMA code, eq. 2 is simplified, taking into 

account only the amplitude of the first motion A(x), 

A(x) = Cs / R,Ref(t,r) rp mpq rq, (3) 

where Cs is the calibration coefficient. R is the distance and r or r o is its direction 

vector. Ref(t,r) is the reflection coefficient associated with incident direction r and 

orientation of sensor sensitivity t A multi-channel observation of the firsl motions at 

more than six sensor locations is necessary and sufficient to solve eq. 3. 

(2) Eigenvalue Analysis 

In order to elucidate principal motions on the crack surface, three eigenvalues of 

the moment tensor are introduced, Assuming that the tensor components consist of 

both tensile contribution and shear contribution, the eigenvalues normalized are uniquely 

decomposed into three ratios X, Y, and Z (Ohtsu, 1991 

1.0 = X+ Y +Z, 

the intermediate eigenvalue/the maximum:E2 

= 0 - Y/2 + Z, 

the minimum eigenvalue/the maximum:E3 

=-X -Y/2+Z, 

(4) 

where X, Y, and Z denote the shear ratio, the deviatoric tensile ratio, and the isotropic 

tensile ratio, respectively. The decomposition is illustrated in Fig. 2. In the SIGMA 

procedure, AE sources for which the shear ratios X are smaller than 40% are classified 

as tensile cracks and those of the shear ratio X greater than 60% are referred to as shear 

cracks In the case between 40% and 60%, AE sources are classified as mixed-mode. 

In order to take a point explosion into consideration, another decomposition was 

proposed by Shah and Labuz (1995). Their new component, however, is essentially 

represented by the ratio Z In addition, it is not reasonable to add another term to the 

moment tensor, because the tensor is theoretically derived from the dislocation model. 

After the eigenvalue analysis, unit eigenvectors el, e2 and e3 are obtained These 

correspond theoretically to three vectors ! + n, i x n and ! - n. Thus, crack vector I 

and crack normal n can be recovered from the following relations, 

1 = [(2 + 21knk)el + (2 - 21knk)e3]/2, 

n = [(2 + 21knk)el - (2 - 21knk)e3]/2 (5) 
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Figure 2. Unified decomposition of the eigenvalues. 

Here the scalar product lknk is equal to (1 + E3 - 2E2)/(1 - E3). It is noted that the 

vectors i and n are interchangeable. 

(3) Damage Parameter 

From eq. 1, moment tensor mpq is obtained in an isotropic material, as follows: 

mpq = [Cpqkllknl]AV = [~.lknkdpq + ~tlpnq+~lqnp]AV, (6) 

where k and la are Lame constants. In damage mechanics, a product of the crack 

motion vector and the crack normal is referred to as a damage tensor. Taking into 

account one crack, it is represented as, 

dkl =l/V* ./'v ([b(y)lk] nt +[b(y)lt] nk )dS / 2 

= (lknl + ltnk) AV / (2V*). (7) 

where V* is the representative volume. Thus, scalar damage parameter D for one 

crack is obtaified as, 

D = n k dkl nt = lknk AV/V*. (8) 

From eq. 6, the trace component of the moment tensor is derived as, 

mkk = (3~,+2B) lknkhV. (9) 
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Comparing eq. 9 with eq. 8, it is found that damage parameter D is equivalent to the 

trace component of the moment tensor. This implies that damage evolution could be 

estimated from the accumulation of the trace components of the moment tensor, mkk. 

(4) Crack Volume 

Based on eq. 9, the crack volume is obtained from, 

AV = mkk/[ (3~+2g)lknk]. (lo) 

As discussed in eq. 5, the scalar product lknk Can be determined from the eigenvalues. 

From eq. 10, it is realized that the crack volume is also obtained from the trace 

component of the moment tensor. To determine the crack volume, however, the 

moment tensor should be determined as calibrated values. This implies that AE 

sensors must be calibrated prior to the experiment. It is noted that sensor calibration 

is not necessary for the standard SIGMA procedure, because only relative values are 

applied to the eigenvalue analysis. 

(5) Stress Intensity Factors 

In Fig.3, the direction 0 of crack extension from a pre-existing crack is determined 

from the direction of the maximum circumferential stress in LEFM by Erdogan and Sih 

(1963) as, 

Kisin0 + Kii(3cos0 -1) = 0. (ll) 

Here, KI and Ku are the stress intensity factors of the mode I and the mode [l, 

respectively. Initiation of crack extension is governed by, 

nO 

J 

b I o~,,.~e9 ~' 

pre-crack 

Figure 3. Crack extenstion from the pre-exisiting crack. 
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