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This formulation is based on the theory of random processes. It includes the correlation
of the individual eigenmodes, and it can be used even for structures with closely clustered
frequencies. The research report of the Earthquake Engineering Research Center of the
University of California #08 of 1991 presents further generalizations that include also
the influence of local geological conditions in addition to the correlation of the individual
modes.

5.4 Response to harmonic excitation

The subject of this section is the solution of the basic equation of motion of elastic solids
discretized by the FEM for harmonic excitation. This loading is one of the most often
used idealizations in structural dynamics, especially for structures loaded by rotating
machinery. The solution can be obtained

e by direct solution in complex eigenvalues (or by expressing displacements in terms
of amplitude and phase shift), or

¢ by mode decomposition.

Both approaches exhibit their pros and cons.

The first approach is more general with respect to the characteristics of damping, as
it allows for nonproportional damping (it can be even said that the form of damping is
immaterial). However, due to uncertainties in input data the solution cannot be carried
out only for a single frequency. Rather, it is necessary to carry out the analysis for a
frequency band in order to construct the resonance curve, and so the computation can be
expensive. (Each point of the curve corresponds to one computation run.)

The efficiency of the mode decomposition is strongly dependent on the characteristics
of damping. If the damping can be assumed to be proportional, the method is very
efficient; otherwise the economy deteriorates.

Before describing the individual methods, the loads need to be classified. The total
load is harmonic if all of the acting forces are harmonic with the same frequency (the
forcing frequency). This can be achieved by decomposing each load component into two
loads phase-shifted by 7/2. The simplest form reads

R(t) = R, coswt + R, sinwt. (5.165)

In the case of a steady harmonic vibration the usual parlance uses amplitude and
phase shift to describe the load. In that case the nth component of the vector R(t) can

be expressed by using amplitude a, and the phase shift ¢, in the following manner (see
Fig. 5.6):

R.(t) = a, sin(wt + @,). (5.166)
The relation between a,, ¢, and the components of the vectors R; and R is given by
a, = \/R?, + R%,, ¢, = arctan %’3 (5.167)
2
As the solution is sought for a steady state, in which the eigenvibration has already

vanished from the response, the time-dependency of r can be written as

r(t) = ricoswt + rosinwt. (5.168)
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Vectors Ry, R3, 71, 7y are time-independent. Substitution of (5.165) and (5.168) into the
equation of motion (5.2) leads to two simultaneous matrix equations for the unknowns »,
and r,,

(K —w*M)r +wCr; = Ry, (5.169)
—U}CT1+(K—W2M)T2 = Rz.

The monitored quantities in a steady harmonic vibration are the resonance phenomena.

It is therefore essential to introduce damping into the computation. As a consequence,

the response of the structure » always possesses both phases, even when the applied loads
act in phase. In that case it only holds that Ry = O.

5.4.1 Direct solution in complex numbers

As noted above, both response parts ry, ry need to be computed, which makes the
approach differ from the usual FEM algorithms. On the other hand, the Fortran language,
which is most often used to program the FEM, is by default equipped with complex
arithmetics. This can be used to advantage.

The load vector R and the displacement vector » can be expressed as real parts of
complex vectors. It holds that

R(t) = Re[Re™!], r(t) = Re[fe™], (5.170)
where N
R(t) = Ry - iR;, 7(t) =7 —ir. (5.171)

One can verify the correctness of the first relation (5.170) by substituting from (5.171).
We obtain

R(t) = Re[(R; — i Ry) (coswt + isinwt)]. (5.172)

After modification,

R(t) = Re[(R; coswt + Rysinwt) + i(Ry sinwt — Ry coswt)], (5.173)

which is identical to {5.165). Correctness of the second relation (5.170) can be proved in
a similar fashion. _

If the vector R is shown in the complex plane, the relation between the amplitude a,,
the phase shift ¢, and the components Ry, Ro, becomes obvious. It is clear that they
represent two different ways to write a complex number (see Fig. 5.6).

tm

Figure 5.6: The relationship between amplitude, phase shift and parts of a complex
number

It is sufficient to satisfy (5.2) at each time instant for both R() and r(t), to make R
and 7 comply with _
(M + iwC + K) 7 =R. (5.174)
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The equation (5.174) is formally identical to the equilibrium condition in a static solution.
However, the matrix K is replaced by the complex matrix

K=(-w’M+ iwC + K), (5.175)

which is called the dynamic stiffness. The algorithm of the solution is the same as in
statics, but all operations must be done in complex arithmetics.!3

5.4.2 Mode decomposition method

Let us assume in what follows that we know the eigenfrequencies and the modes of un-
damped eigenvibration. The eigenmodes are collected in the matrix Y such that the
individual modes constitute the columns of Y. It is additionally assumed that they are
normalized with respect to the mass matrix [compare with (5.20)]:

Y'MY =1. (5.176)

The approximate solution is sought in the form of a linear combination of p lowest
eigenmodes

F=Ygq, (5.177)

where g is the vector of unknown complex coefficients. Substitution of (5.177) into (5.174)
gives .
(-w*M + iwC + K)Yg=R (5.178)

Multiplication of (5.178) from the left by Y7 leads (with the orthogonality conditions
applied) to the system of linear algebraic equations with complex coefficients

(I +iwYTCY + 2*) q=Y"R, (5.179)

where §22 is a diagonal matrix, whose terms are the squares of the circular eigenfrequen-
cies.

Proportional damping

The system obtained for a general damping matrix C consists of simultaneous equations,
and the following section is devoted to its solution. In many practical cases, the damping
can be considered proportional to mass and stiffness, so that

YTcy =20, (5.180)
where 2, is a diagonal matrix with terms [compare with (5.114)]
Whe = fkwk, (5181)

wy, are the eigenfrequencies, and & are the coefficients of relative damping.
The system (5.179) decouples into

(—w? + 2iwwit + Wi = YT R (5.182)

131t is appropriate to note that the matrix of dynamic stiffness X is a function of the forcing frequency
w. It is necessary to repeat the computation for each frequency.
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with the solution )

—w? + 2wwgly, + wi’

%=y R (5.183)

Using (5.177) and (5.183) the relationship between the vector of output quantities
(displacements, internal forces, stresses, etc.) and the load vector can be formally written
with matrix G in the form

v=GYQY'R=UR, (5.184)
where Q is a diagonal matrix with complex terms

1
— w2 A 2°
w? 4 2iwweéy + wi

Qii =

(5.185)

Equation (5.184) holds also for more than one right-hand side; only the vectors Rand
v are replaced by matrices R and V.

The only matrix that changes with different frequencies w in equation (5.184) is the
matrix Q, whose terms can be for different w recomputed from (5.185). For the real and
imaginary part of Q@ we have

w? — w?
RelQ;) = ——20; , (5.156)
(wj - wz) +4wkle?

-2 ww;€;

(wjz - w2)2 + 4w2w12~§f'

Im[Qy] =

(5.187)

Equation (5.184) can then be rewritten without using complex numbers as two equa-
tions for two phases of the output quantities

Re[v] = GY (Re[QIY"R; +Im[Q]Y"R,), (5.188)

Im[v]

GY (-Re[QY"R, + m[Q]Y”R,). (5.189)

Vectors (or matrices, for more right-hand sides) YTR; and YT R, can be computed
beforehand, independently of given frequencies.

The algorithm for the solution of forced vibration by mode decomposition is therefore
very simple for the case of proportional damping. It can be included in any computer
program which is able to compute the eigenmodes normalized with respect to the mass
matrix. 14

Nonproportional damping

Interaction of the structure and the subgrade is a typical example of a nonproportional
damping. The damping in the upper part of the system differs considerably from the
damping of the foundation. This is due partly to different material properties, partly
to the dissipation of energy into the semi-infinite half-space. Therefore, it is not always
possible to accept the damping model of (5.180). There are two options with respect to
the mode decomposition method:

14The algorithm can also be used for an analytic solution by the Kolousek exact deflection method.
The eigenmodes are normalized with respect to the mass u (mass per unit length of the beam), which
means [ pwiw;ds = &;;.
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e Consider the mode decomposition method only as a means for reducing the dimen-
sion of the problem, and solve (5.179) according to Section 5.4.1, or

o transform (5.179) into a system of independent equations.

The first alternative does not need a detailed explanation. The second one, on the
other hand, requires solution to a problem of damped eigenvibration. This is rather a
demanding task for larger systems, and the majority of programs does not include this al-
gorithm. There is a simple approximate solution based on the condensation by undamped
eigenmodes Y, besides the Lanczos method (Section 5.2.11). The nonproportional damp-
ing leads to the homogeneous system of algebraic equations

I, + Cq, + 2°q, = O, (5.190)

where .
c=Y"cy.

The vectors g, are characterized not only by amplitude, but also by phase for the
nonproportional damping case. If p modes of undamped eigenvibration are used to reduce
the dimension to an approximate system (5.190), is is necessary to solve 2p equations with
real coefficients. Each eigenmode is thus characterized by the vector of amplitudes and the
vector of phases. This is the consequence of the fact that the nonproportionally damped
structure has no stationary nodes of vibration. The method has been proposed in [83]. It
is based on the simple idea that the p original equations are complemented by additional
p equations

q; = q, (5.191)

Equations (5.190) and (5.191) can be written in the matrix form as

Galla) e ellat-lo) e

The inverse matrix to the first square matrix in (5.192) is

[? é]_l=[_? é] (5.193)

Thus (5.192) can be transformed by using (5.193) into

- 2 . .

[C 2 H""}:A{q‘}. (5.194)

I o q; q:
The terms of the square matrix of (5.194) are real, but the matrix is nonsymmetric.
If the damping is subcritical (which is the case for building structures), the solution of
(5.194) gives 2p eigenmodes with eigenvalues A. The eigenvalues are complex conjugate
with a negative real part. The imaginary part represents the circular frequencies of the
damped vibration. The numerical solution of the eigenvalue problem (5.194) can be
obtained by using standard algorithms from scientific subroutine libraries. The authors
have used subprograms of the library SSP (Subroutine Scientific Package), marketed by

IBM. The system matrix (5.194) is full; its size, however, permits the whole computation
to be done in-core.
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The computed damped vibration eigenmodes of (5.194) can be used to transform
(5.179) to a canonical form even for nonproportional damping. Because this holds also
for time-dependent loading, it is advantageous to start from equations of motion written
as a system of first-order ordinary differential equations. It holds that

Az+Bz=f, (5.195)
O I —-I O
A= — B =
[I C]’ [0 92]’

f:{Y(T)R}’ ZZ{Zi}'

Similarly to the preceding section, the vectors f, z can be described as

where

£(t) = Re[fe™],  2(t) = Re[ze™]. (5.196)
The equations of motion after substitution of (5.196) into (5.195) become
(iwA+B)z=T. (5.197)

Now, the transformation into eigenmodes is repeated once again. The transformation
can be written as
Z = Ac, (5.198)

where A is the matrix of coefficients of the damped vibration eigenmodes and c is the
vector of coefficients of the linear combination. Substitution of (5.198) into (5.197) and
multiplication from the left by AT gives

(iwA+B)e=ATYF, (5.199)
where
A= ATAA, B = ATBA.

As the eigenmodes of the damped system are orthogonal, we have that the matrices A,
B are diagonal. Therefore (5.199) is a system of linearly independent algebraic equations
with complex coefficients. Components of ¢ are given by

ATF).
(iw = A5) Ajj
Finally, after some manipulations, we obtain

r =Y Re[Ace™]. (5.201)

If the solution produces not only modes for generalized displacements, but also for
stresses (internal forces), then the expression Re[Ace™'] can be used to compute the
corresponding mechanical quantities.
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Chapter 6

Semianalytical Methods

Engineering structures often have constant geometric and material properties along a
certain direction. Typical examples are prismatic plates and box girders, frequently used
in bridge engineering. From the numerical point of view, bridges also have favorable
boundary conditions—they are simply supported at both ends, and box structures are
usually stiffened by end diaphragms. In addition to line structures, axially symmetric
structures also fall within the category of structures that can be efficiently solved by a
combination of the FEM with Fourier series expansions. Such an approach is called a
semianalytical method. It was first applied by Grafton and Strom in [65] to the solution
of axially symmetric shells. The semianalytical approach was later extended to axially
symmetric bodies in [178], and to prismatic folded plates in [45] and [46]. A general
formulation was given in [75] and [127]. In this chapter, we derive the relations needed
for the solution of rectangular plates, and we briefly describe the general formulation for
curved folded plates.

The semianalytical method transforms the solution of a two-dimensional problem into
the solution of a sequence of one-dimensional problems, and the solution of a three-
dimensional problem into the solution of a sequence of two-dimensional problems. Ex-
amples of two-dimensional structures given in Fig. 6.1 show that the structure is not
divided into elements but into strips. This is the origin of the frequently used term
finite strip method.

Figure 6.1: Examples of two-dimensional structures

6.1 Energy-based beam analysis by Fourier series

The fundamental idea of the approach based on Fourier series is illustrated by the solution
of bending of a simply supported beam (Fig. 6.2). The total potential energy is given by
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Tix)
A
A— rr——l —X
p——ed b

. { .
Figure 6.2: Simply supported beam

é ; E/ . do /:zw dz. (6.1)
/6 f fwdz.
The boundary conditions requiring ¢

w =0, @zo forx =0 and forz = {.
dz?

are satisfied by the Fourier series

nuT
w(z) = "wsin——
n=1 l
. . - . . . nax

Application of Fourier series is based on the orthogonality of functions sm——l- on the
interval < 0,1 >, i.e., on the property

L nmx mnx ! forn =

/ sm——l— sin 7 dz =< 2 rn=m, (6.2)
0 0 forns#m.

Same as the displacement function w, the load function f can also be represented by a

Fourier series o
Z mra; (6.3)

The evaluation of the coefficients ™f is made easy by the orthogonality property (6.2).
Multiplying expression (6.3) by sin mre
get

and integrating from 0 to ! (scalar product) we

mT mnx

L dr = "f/ sm—— sin dz.

/ f(z) sin —

Due to (6.2), this relation leads to

wr 2= | . nmz
f——l'/of(fl’,')SlD'TdI

Substituting into (6.1) and evaluating the integrals we obtain

EILE (nrd\ . o & =,
=53 () (w5 % T

The coefficients "w can now be determined from the condition of minimum potential

energy, which gives
o1l nf
e =0 T VS Ei(“)
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