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CONCLUSIONS AND RECOMMENDATIONS 

This study explored the use of metakaolin-based geopolymer for evaluating the swell-shrink 

behavior of a native North Texas soil. The soil was mixed with the K431 GP mix at a ratio of 8% 

(by weight) dry GP to dry soil. Shrinkage tests show that geopolymer treatment of soil is 

efficient in reducing shrinkage, without developing cracks. Swell tests show that the swell 

potential of the treated soil is mitigated within acceptable limits. To summarize, GP treatment of 

soils reduce the swell-shrink potential of soils significantly, which is a major concern for high PI 

soils. Therefore, there is potential for wide-scale application of GP as a sustainable soil stabilizer 

for high PI soils. Further study is recommended to evaluate the effects of dry GP-to-dry soil 

ratio, GP composition, processing methods, and alkali-activator on the engineering properties of 

GP treated subgrade soils. Furthermore, durability studies as well as sustainability metrics and 

life cycle cost analysis studies would be useful in practical implementation of this soil 

stabilization method. 
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ABSTRACT 

Recently, soil strengthening using gel-type biopolymers have been attempted by many 

researchers. However, most previous studies have been conducted by focusing on feasibility of 

biopolymers as a new soil binder with lack of in situ considerations (e.g., confinement and strain-

stress related variation). This study aims to investigate the shear behavior of xanthan gum-treated 

sand under different in situ confinement conditions. Laboratory tri-axial test is performed under 

three different confinement conditions (3=50 kPa, 100 kPa, 200 kPa) with different xanthan 

gum biopolymer contents (mbp/ms=0.5%, 1.0%, 2.0%). It is revealed that high shear strength is 

developed when the biopolymer film matrix is established within the pore space when the 

biopolymer is thoroughly dried in the laboratory (oven). The strengthening effect by biopolymer 

film is substantial although its enhancement is varied according to xanthan gum contents and 

confinement conditions. 

INTRODUCTION 

Near surface ground improvement has been widely performed in geotechnical engineering 

practices, where new materials and methods have been actively introduced to the field by 

numbers of research (Ahmed et al. 2011; Chen 2006; Han 2015; van Paassen et al. 2010; Van 

Paassen 2009). Several types of chemical soil stabilizers including lime, cement, and silica-based 

gel have been commonly used in various ground improvement practices. However, as the 

importance of environment preservation and sustainability raises, demands on new construction 

materials have motivated research and development of environmentally-friendly materials 

nowadays (Chang et al. 2016). 

Researchers have focused on the natural environment of soils, where microbes and fungi 

exist and actively produce excrements which provide inter-particle bonding substances in soils. 

Microbial induced calcite precipitation (MICP) has been introduced improve mechanical 

properties of soils, especially the strength of sand soils (Cabalar et al. 2016; DeJong et al. 2006; 

Lin et al. 2016; Montoya and DeJong 2015; Mujah et al. 2017; Pham et al. 2013; Van Paassen 

2009). However, the effectiveness of MICP treatment shows high sensitivity to in-situ conditions 

(porosity, temperature, moisture content) although precipitated calcite renders recognizable soil 

strengthening. 

Meanwhile, microbial biopolymer treatment has been attempted to overcome limitations of 

MICP in terms of time deduction and qualitative soil treatment for adequate practical 

implementation. Microbial polysaccharides (i.e., biopolymers) have been actively attempted to 
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be a new bio-soil material by numbers of research (Cabalar et al. 2018; Cabalar and Canakci 

2011; Chang and Cho 2012; Chang et al. 2018; Chang et al. 2015; Chang et al. 2015; 

Kavazanjian et al. 2009; Kulshreshtha et al. 2017). 

Biopolymer treatment for soil strengthening becomes comparable to conventional stabilizers 

such as cement, and gypsum in strengthening efficiency and low CO2 footprint perspectives 

(Chang et al. 2016). In details, biopolymer contributes to decrease CO2 emission by reducing the 

usage of cement, which is a high CO2 emitting material by contributing almost 8% of the global 

CO2 emission (Le Quéré et al. 2018). On average, CO2 emission related to cement usage in 

geotechnical engineering practices is estimated to take 0.2% of the global CO2 emission (Chang 

et al. 2016). Moreover, biopolymer production does not show high CO2 emission due to its 

carbon capture during biopolymer production. 

It is necessary to consider in-situ affecting factors in order to enhance effectiveness of 

biopolymer treatment. Xanthan gum has been introduced to be a promising soil binder due to its 

high strengthening (Cabalar et al. 2017; Chang et al. 2015) and shear strength (Lee et al. 2017) 

behaviors. However, previous studies mostly focused on feasibility validation and basic 

strengthening behavior investigation. Especially, in-situ three-dimensional stress conditions 

consideration has not been performed adequately. Thus, this study aims to evaluate the shear 

strength properties of xanthan gum-treated sands under different confining stress conditions ( 3 

= 50 kPa, 100 kPa, 200 kPa) and biopolymer contents (mbp/ms = 0.5%, 1.0%, 2.0%). 

MATERIALS AND METHOD 

Sand: Sydney sand which is classified as poorly graded soil (SP) has been used in this study. 

Sydney sand is representative quartz sand with subangular particles. Sydney sand has maximum 

void ratio (emax) of 0.92, minimum void ratio (emin) of 0.6, D50 of 0.36, coefficient of uniformity 

(Cu) of 1.18, coefficient of curvature (Cc) of 0.96, and specific gravity (Gs) of 2.6 g/cm3 (Payan et 

al. 2016). 

 
Figure 1. Particle size distribution curve of Sydney sand. 

Xanthan gum biopolymer: Xanthan gum is an anionic polysaccharide produced by the 

plant-pathogenic bacterium Xanthomonas campestris (Chang et al. 2015). Xanthan gum is a 

hetero-polysaccharide which has a primary structure consisted of two glucose units, two 

mannose units, and one glucuronic acid unit (Becker et al. 1998). The beta-D-glucose units in a 

primary structure has connection at 1 and 4 positions, therefore, it consists main chain. Two 

mannose units and one glucuronic acid unit are linked to the main chain by the connection 
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toward glucose at O-3 position (Garcıá-Ochoa et al. 2000). 

 
Figure 2. Shear behavior of untreated sand: (a) stress-strain relationship, and (b) failure 

envelope under three different confinement conditions. 

 
Figure 3. Example of strain-stress relationship according to confinement variation at 0.5% 

xanthan gum-treated condition (mbp/ms) at 50, 100, 200 kPa confinement conditions. (a) 

Axial strain-deviator stress. (b) Mohr-circle diagram. 

Xanthan gum-treated sand: The xanthan gum-treated sand specimens are prepared by 

xanthan gum biopolymer and Sydney sand with wet-mixing method. In detail, hydrogel solution 

is mixed with sand at 20% water content condition using a laboratory mortar mixer. Thereafter, 

homogeneous biopolymer hydrogel-treated soil specimens were molded into a cylindrical shape 

with 50-mm-diameter and 100-mm-height. The xanthan gum treatment percentage is differed as 

0.5%, 1.0%, and 2.0% (mbp/ms). All specimens were dried in an oven at 70°C for 14 days to 
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ensure sufficient biopolymer biofilm matrix formation between soil particles through the 

dehydration of xanthan gum hydrogels (Chang and Cho 2018; Chang et al. 2015). After drying, 

specimen molds were dismantled and the dimensions and mass of each sample were measured. 

The average relative density of xanthan gum-treated sand specimens show Dr = 67%. 

 
Figure 4. The effect of xanthan gum content related to friction angle (a) and cohesion (b). 

Laboratory triaxial test: Both untreated (natural) and xanthan gum-treated sand have been 

tested via laboratory triaxial test apparatus (Wykeham Farrance WF10072). Xanthan gum-treated 

specimens were mounted directly to the bottom plate, with porous stone being placed between 

the soil sample and bottom plate. Another porous stone was placed on the top of the sample 

followed by the top cap. Finally, a rubber membrane covers the sample. 

Consolidated-drained (CD) test has been performed for untreated according to ASTM 

D7181-11 (ASTM 2011). Vacuum pressure has been to make sand stand up itself. Saturation has 

been proceeded by the circulation of de-aired water and CO2 gas until achieving a sufficient B-

value (> 0.9). The back pressure of cell has been controlled as 500 kPa for saturation. 

For xanthan gum-treated sand, molded specimens have been tested without saturation to 

obtain the strength of dried xanthan gum-treated sand under triaxial loading. The consolidation 

procedure has been omitted as well as saturation. As xanthan gum-treated sand is regarded to be 

fully dried, drainage has not been considered during deviator stress loading. 

The applying isotropic cell pressure and deviator stress is controlled by Standard 

pressure/volume controller (GDS STDDPC), and the strain rate is measured by external LVDT 

(Linear Variable Differential Transformer). The confinement conditions are 50 kPa, 100 kPa, 

and 200 kPa. The strain rate is 0.1% min-1. 

EXPERIMENT RESULTS 

The shear behavior of untreated sand (medium dense; Dr = 70%) shows peak behavior as 

shown in Fig. 2(a). The peak shear strength increases gradually as the confinement pressure is 

increased. Thereafter, the friction angle of untreated sand is determined as 38⁰ based on the 

Mohr-coulomb failure diagram as shown in Fig. 2(b). 

Xanthan gum-treated sands show higher strengthening effect with xanthan gum content 

increase. For instance, the stiffness of 1.0% biopolymer-treated sand is slightly enhanced as the 

confining pressure is increased, as shown in Fig. 3. Moreover, xanthan gum-treated sands show 

higher ductility compared to untreated sand, where ductility increases with higher xanthan gum 

content and confining stress levels (Fig. 3a). 

In addition, cohesion of xanthan gum-treated sand substantially increases as xanthan gum 

content increase (Fig. 4b), while friction angle does not show remarkable change at low xanthan 
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contents but slightly increases at mbp/ms =2.0% (Fig. 4a). In details, the cohesion is increased 

from 18 kPa of untreated soil (it can be regarded as a negligible value) to 216.9 kPa, 252.8 kPa, 

and 365.2 kPa with higher xanthan gum contents (Fig. 4b).  

DISCUSSION 

Xanthan gum enhances inter-particle bonding characteristic due to the formation of firm 

biofilms residues through the dehydration of hydrogels (Chang et al. 2015). Regardless of 

confinement conditions, the xanthan gum-treated sand shows higher strength than untreated sand. 

Thus, it can be regarded that xanthan gum treatment is more effective at shallow depth 

conditions where the confinement level is low or negligible. Indeed, the strengthening efficiency 

increases with higher xanthan gum contents. 

Experimental results of this study (both untreated and xanthan gum-treated sands) and results 

from previous studies (Ayeldeen et al. 2016; Latifi et al. 2016; Lee et al. 2017) show that 

biopolymer induced soil strengthening mostly attributes to the inter-particle cohesion 

improvement rather than affecting the physical friction characteristic of soils. Thus, the higher 

strengthening effect by xanthan gum treatment can be explained to be a result of the formation of 

thicker biopolymer films due to the higher xanthan gum content. 

However, this study has a limitation where it does not consider the water content variation 

and water-dependent hydrogel transfer of xanthan gum (Lee et al. 2017). Despite xanthan gum 

treatment show promising sand strengthening at the initially mixed and dried conditions, post-

saturation after drying may render awkward strength behaviors where re-hydrated xanthan gum 

hydrogels are expected to swell and deduce inter-particle bonds (Chang et al. 2017).Thus, the 

cohesion variation of xanthan gum-treated sand subjected to further re-hydration and re-

dehydration needs to be investigated by future studies. 

CONCLUSION 

The xanthan gum induces higher strength by inter-particle bonding between soil particles 

with development of biopolymer film after enough drying process. The peak strength at 0.5% 

xanthan gum-treated condition is approximately at least 2 times higher regardless of confinement 

condition as shown in Fig. 2. Enhancement of peak strength is substantial compared to untreated 

condition regardless of confinement pressures, and the peak strength at the higher confinement 

condition is higher than 1.5 MPa even with 0.5% xanthan gum treatment in mass ratio. Meantime, 

the tri-axial shear strength of xanthan gum-treated sand is increased as higher confinement 

pressure is applied, which is reflected to describe the important in-situ parameter. In other words, 

application of xanthan gum treatment is still valid under specific amount of confining pressure. 

Therefore, it can be assumed that the application of hydro-gel type biopolymer is effective at the 

shallow depth for practical implementation. 

In addition, the shear strength is enhanced according to xanthan gum content. Triaxial shear 

behavior of xanthan gum-treated sand shows significant increase on cohesion with xanthan gum 

content increase. It can be explained that the higher cohesion which is developed by biopolymer 

film strands between soil particles, resists against external shearing forces. In other words, the 

cohesion of xanthan gum-treated sand is a main factor which is related to shear behavior in case 

of fully dried specimens. 
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