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Abstract

Monitoring the pose of the construction equipment is an essential prerequisite
for determining safety and productivity of construction processes. In order to make
construction sites safer, there is high demand for accurate and real-time motion
tracking tools and methods to capture any movement of the equipment and its parts.
Computer vision (CV) techniques are becoming more popular because of their lower
cost of deployment and availability compared with other techniques. However, few
CV methods have been focused on equipment part detection and pose estimation.
This paper aims to propose a new method to detect the parts of the construction
equipment that can be used to detect its pose. Using the concept of synthetic images
for each equipment’s part (e.g., bucket, dipper, boom, and body), multiple detectors
are trained for each part from different views and applied to recognize the parts. The
synthetic images are generated by overlaying the images of the 3D model of the
equipment on the real images of the construction sites as background.

1 INTRODUCTION AND BACKGROUND

Monitoring the safety and productivity on the construction site is a difficult
task since it requires a lot of effort for collecting and processing the related data. One
of the most important sources of information for evaluating the safety and
productivity of the construction equipment is the near real-time pose data of the
equipment. Estimating the pose of articulated equipment (e.g. excavator) depends
highly on the correct detection of the parts. Focusing on excavators, this research
aims to investigate the potential of detecting the equipment parts as a fundamental
step toward pose estimation by developing a comprehensive database of synthetic
images of the excavator and its parts from various views with different scales and
light conditions and applying the detectors trained using the mentioned database on
the images and video frames recorded from the construction sites. In the following
section, previous studies that focused on equipment pose estimation are reviewed.

Azar and McCabe (2012) described a novel approach for articulated
equipment recognition and pose estimation. They reviewed the concept of the latent
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Support Vector Machine (SVM) part-based models (Felzenszwalb et al., 2010) which
applies a classifier to detect the whole body of the equipment as root and then looks
for the body parts within the root. Since the shape of whole excavator body is
changing significantly over time, they suggested using a major part of the body as
root and searching for the adjacent parts around the root. The boom of the excavator
was considered as root, and the dipper was selected as the adjacent part. For each side
of the excavator (only right and left), they trained three classifiers (in total six for
both sides), which cover the dipper in three positions (horizontal, inclined, and
vertical). Furthermore, a spatio-temporal reasoning method (Renz & Nebel, 2007)
was applied to improve the detection rate. This method used a logical relationship
between the detected bounding boxes around the target object over time to reject the
false detections. The results of this research show an accuracy of 95.2%; however,
this method is only applicable in videos with static backgrounds.

Recently, Azar et al. (2015) proposed a new framework for monitoring the
motion of the excavator’s boom and dipper using planar markers attached to the
boom and dipper. Figure 1 shows how the AprilTag (Olson, 2011) markers are
attached to the excavator parts. To determine the axis of each part, at least two
markers are required to be placed for each part. The results of their sensitivity
analysis reveal that although this method provides a reasonable accuracy and is
considered as a low-cost and user-friendly method, it is unable to track 3D poses and
requires a clear line of sight of the parts, clean and visible markers, and the camera
plane to be parallel to the marker plane.

Figure 1. Marker based excavator pose estimation (Azar et al., 2015)

An early research for understanding construction activities was done by Yang
et al. (2011). The ultimate goal of this research was to find the current activity of
tower cranes out of two categories: concrete pouring and non-concrete material
movement. They applied the 2D-3D rigid pose estimation and the silhouette-based
tracking algorithms to estimate the jib angle and the trolley position.

A video interpretation model was proposed by Gong and Caldas (2010) to
assess automatically the productivity of construction operations. The method tries to
synchronize the operation happening in the video with the corresponding simulation
model of the same operation. The main data that their method requires from the video
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are the spatial, temporal, and semantic contexts. Having the mentioned data ready on
hand, their model can detect the event, classify its state, and recognize the ongoing
scenario. Later on, Gong et al. (2011) extended the previous research by using Bag-
of-Video-Feature-Words and Bayesian network models to learn and classify the
actions of the workers and the equipment

Another research done by Golparvar-Fard et al. (2013) presented an approach
for learning and classifying the equipment actions. The method extracts the spatio-
temporal features of the equipment actions from the video frames of the related
construction processes. These features are then used to generate the Histogram of the
Oriented Gradient (HOG) feature descriptors to create the code words using k-Means
clustering technique. A multi-class SVM classifier learns the distribution of the code
words and applies it to the new videos to recognize the equipment action classes. The
proposed method was tested on the videos containing an excavator and a truck, and
the accuracies of 86% and 93% were achieved, respectively.

Furthermore, a framework named Server-Customer Interactive Tracking
(SCIT) was proposed by Azar & McCabe (2013) and extended by Azar et al. (2013).
The system, which consists of image and video processing module, spatio-temporal
reasoning module, and action recognition module, can detect and track the machines
and recognize their activities. The worst accuracy provided from eight site visits was
86%, and the best one was 100% while the average was 95%.

Soltani et al. (2015) investigated the approach of annotating the images
automatically using a 3D model of the object to recognize in the images of
construction sites. The results showed that the proposed automatic annotation method
using synthetic images can play the role of real images captured from the construction
site for training purposes. Moreover, the automatic annotation significantly reduced
the required time for defining Region of Interest (ROI) more than 90% compared to
traditional annotation methods while the accuracy of the object recognition is
improved by training more synthetic images.

2 METHODOLOGY

Reviewing the literature motivated the authors to propose a new method for
estimating the pose of the construction equipment. The method can be applied on
single images whether they are static images or separated frames of a video. In other
words, in the proposed method, the temporal information of the target objects in the
preceding and succeeding frames is not involved in the process for estimating the
pose of the equipment. The framework of the proposed method is presented in Figure
2. Training the equipment parts’ detectors requires positive image dataset and
negative image dataset. The positive images are created using the concept of the
synthetic images proposed by Soltani et al. (2015) and the part detectors are trained
using the generated positive and negative samples.
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Figure 2. Process of recognizing equipment parts

The synthetic images based on the 3D model of construction equipment can
be used for training the detector, which can recognize the target object within a new
dataset. The trained detectors are then applied on the cropped frames to find the parts
of the equipment. The following sections explain the details of the generation of
positive and negative images.

2.1 Generation of Positive Images

The 3D model of the equipment is assumed to be available for creating the
synthetic images. Using the method proposed by Soltani et al. (2015), the around-
view images of the equipment with a single color background are created within the
3D modeling tool by the server. These images are then used for creating the synthetic
images by integrating the real images of the construction sites as their background.
Additionally, each part of the equipment is used for generating the part-based image
datasets where the other parts are hidden. This process results in four datasets for the
excavator’s parts (i.e. dipper, boom, body, and bucket).
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The process of generating and annotating the synthetic images for the parts
would be slightly different compared to the similar process explained in Soltani et al.
(2015) as shown in Figure 3. First, the image of each part with the single color
background is segmented to recognize the part, and a bounding box is drawn around
each part (Figure 3(a) and Figure 3(b)). Afterward, the generated boxes are added to
the image of the whole equipment (Figure 3(c)) from the same view, and the
background image (Figure 3(d)) is added to the image. As result, Figure 3(e) shows
the annotated image of the equipment’s part.

=

() (d)

Figure 3. Parts auto annotation process

2.2 Generation of Negative Images

Another important step is to prepare the negative images for the training
phase. In addition to the auto-generated negative images explained in Soltani et al.
(2015), another set of images needs to be prepared to help the part detectors to
differentiate each part of the equipment from other parts. Therefore, after generating
the bounding boxes around the parts in the previous steps, the content of each
bounding box is stored as a negative sample for the training of the other parts. For
instance, the cropped areas from the synthetic images of the boom, bucket, and body
of the excavator are used as negative samples for the training of the dipper. In the
next phase, HOG algorithm is applied to train the detectors for each part of the
equipment using the created positive and negative samples. The detectors are sent to
the main server for recognizing the parts of the excavator (more information on this
process is given in Soltani et al. (2015)). The bounding boxes of the detected areas for
each part are extracted by applying the parts’ detectors individually.

3 CASE STUDY

The proposed method is validated by performing the experiments on the static
image dataset and the consecutive frames extracted from a video. The 3D model of
the excavator plays a key role for generating the images of the excavator and its
boom, dipper, bucket, and body. After adjusting the light and the reflection conditions
of the model taken from Google Warehouse in Autodesk 3D Maxs, 17 virtual
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cameras were defined as shown in Figure 4. These cameras are located every 10
degrees from the equatorial plane of the sphere.

The covering area starts at 85° on the north and finishes by 75° on the south.
Each camera traverses on a horizontal circle with a step of 1° focusing on the
excavator. The first dataset was created using the captured images from the whole
excavator while the background is set to white color. In the next step, the color of all
parts except the target part was changed to the same white color as the background
(e.g. if the target part is the body, the color of the boom, bucket, and dipper was
changed to white) and then the around-view images were captured. The reason for
making the parts white in the proposed method instead of hiding them is that these
parts can block the full view of the target part, and this fact needs to be considered
(e.g. the boom was blocking the cabin of the operator as shown in Figure 5(b)). As
shown in Figure 5(a), the boom, dipper, and bucket were hidden while in Figure 5(b)
the boom, dipper, and bucket were whitened.

(a) Hidden boom (b) Whitened boom

Figure 4. Spherical position of the Figure 5. Equipment image generation
camera alternatives

The architecture of the database of the equipment images is illustrated in
Figure 6. The database consists of five sub-databases for each part (the body, dipper,
boom, bucket, and all parts together). Within each dataset, 17 datasets are created for
every 10° latitude starting at +85° and finishing by -75°.

Each dataset covers the around-view of the parent database at the specific
latitude every one degree. The detailed information regarding the data stored in the
excavator database is provided in Table 1. Each dataset has 360 images, and its parent
sub-database includes 17 datasets with 6,120 images in total. The main database has
five sub-databases and 30,600 raw images.
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Figure 6. Equipment image database structure

Although this database covers all views of the equipment, some views may
not be used for the training phase, or they may be used only in special cases. For
instance, the view of the equipment at -25°, -35°, -45°, -55°, -65° or -75° can be used
in a case when the equipment is working on the top of a hill, but the camera is located
on the ground down to the hill. Therefore, all views are stored in the database for any
further possible application.

Table 1. Equipment image database layers

Data Structure Excavator Database Sub-Database Dataset
Content 5 Sub-Databases 17 Datasets 360 Images
Number of Images 30,600 6,120 360

3.1 Experiment on Static Images

In the first test, three detectors are trained and evaluated for each part, and the
result of each detector is compared with the other detectors. In all trained detectors,
15 backgrounds, including one white color background, are used to generate the
synthetic images. Moreover, three lighting conditions are applied to the created
images. For each part, three cases are considered to be evaluated. The first detector is
trained using the images viewed from the latitude of -5° to +55° and 45° to 135" on
the horizontal axis considering one size of the object which is the largest possible size
of the equipment in one image. The total generated synthetic images are 28,665 (91
images from one-quarter of the around-view multiplied by 3 light conditions, 15
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backgrounds, and 7 latitudes). The second case covers from the latitude of +5° to
+45° and 45" to 135" on the horizontal axis considering one size of the equipment
with 20,475 images (91 images from one-quarter of the around-view multiplied by 3
light conditions, 15 backgrounds, and 5 latitudes). The third case contained 61,425
images from latitude of +5° to +45° and 45° to 135° on the horizontal axis considering
three sizes of the object which are the largest, half, and quarter size of the equipment
in one image (91 images from one quarter of the around-view multiplied by 3 light
conditions, 15 backgrounds, 5 latitudes, and 3 sizes). This process is repeated three
times for the dipper, boom, and body. The bucket results were for not reliable because
the bucket is usually covered by dirt and soil and it is very hard to differentiate it
from the soil.

Regarding the negative samples, the auto negative sampler generates 1,600
images randomly out of 14 backgrounds (15 minus one white color background) as
the fixed negative dataset. Moreover, for case one, 114,660 images including 85,995
images of the other parts except the target part and 28,665 images of the positive
images while the target part is deleted from them. The variable numbers of the
negative images follow the same procedure as in case one and are added to the fixed
negative samples as explained before.

Table 2. Tests configurations

Vertical Range Horizontal Range | Size(s) | Positive Images | Negative Images
Case 1 -5° - 55° 45°-135° Single 28,665 116,260
Case 2 5°-45° 45°-135° Single 20,475 83,500
Case 3 5°-45° 45°-135° Three 61,425 247,300

The results achieved for detecting the dipper shows that the precision and
accuracy of the detections are reduced by decreasing the latitude angles and
increasing the number of sizes of the dipper (Table 3). That could happen based on
the fact that the shape of the dipper is somehow symmetric; therefore, including
multiple sizes of the dipper during the training phase led to the detection of other
objects in the scene which look similar to the dipper.
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Table 3. Results of experiment on static images

Precision (%) Recall (%) Accuracy (%)
Case 1 54 93 52
Dipper
40 100 40
Detector Case 2
Case 3 10 100 10
Case 1 64 100 64
Boom
80 98 78
Detector Case 2
Case 3 86 98 84
Case 1 29 100 29
Body
32 100 32
Detector Case 2
Case 3 56 100 56

On the other hand, for the boom and the body, the results are opposite, and the
precision and accuracy are increased by reducing the latitude angles and increasing
the number of the sizes. This could be explained by the fact that the body (and
specially the boom) looks unique and not symmetric; therefore, for cases two and
three, the trained detectors have more chances to detect their target correctly.
Regarding the recall, since the target objects are assumed to be always available in
the scenes, there is no possibility for the true negatives, and the recall values have an
opposite behavior compared to the precision and accuracy.

3.2 Experiment on Video Frames

This test is done on a construction site in Vancouver. The best detectors from
Section 3.1 are selected to apply on the video acquired from the construction project.
The detectors used in case one, case two, and case three for the dipper, boom, and
body, respectively, are considered in this experiment.

The results in Table 3 show that there is no false negative detection. Also,
there is no true negative since the excavator is always available in all video frames.
The detectors perform well by achieving accuracies of 95% and 97% for the dipper
and boom, respectively. However, the accuracy and precision of the body’s detector
are 48%, which is not satisfactory and needs to be further investigated.

Table 4. Results of experiment on video frames

Precision (%) Recall (%) Accuracy (%)
Dipper 95 100 95
Boom 97 100 97
Body 48 100 48

4 CONCLUSIONS AND FUTURE WORK

In this paper, the proposed equipment parts’ detection method was discussed.
Before starting the pose estimation algorithm, it was necessary to create a
comprehensive image database for the target equipment and its parts. Furthermore,
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the database was used for training multiple CV detectors. The process of generating
and annotating the images were performed using the method proposed in Soltani et
al. (2015). The equipment parts’ detectors were applied on the video/images from
construction sites to search for the parts. Two experiments were done on the static
images and video frames to validate the performance and capability of the proposed
method. The results showed that reliable accuracies were achieved by applying the
proposed method on the video frames. Moreover, the performance of High
Performance Computing (HPC) on generating and annotating the image database
showed that using more processors could dramatically reduce the required time.
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