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Abstract 

Monitoring the pose of the construction equipment is an essential prerequisite 

for determining safety and productivity of construction processes. In order to make 

construction sites safer, there is high demand for accurate and real-time motion 

tracking tools and methods to capture any movement of the equipment and its parts. 

Computer vision (CV) techniques are becoming more popular because of their lower 

cost of deployment and availability compared with other techniques. However, few 

CV methods have been focused on equipment part detection and pose estimation. 

This paper aims to propose a new method to detect the parts of the construction 

equipment that can be used to detect its pose. Using the concept of synthetic images 

for each equipment�s part (e.g., bucket, dipper, boom, and body), multiple detectors 

are trained for each part from different views and applied to recognize the parts. The 

synthetic images are generated by overlaying the images of the 3D model of the 

equipment on the real images of the construction sites as background.  
 

1 INTRODUCTION AND BACKGROUND 

Monitoring the safety and productivity on the construction site is a difficult 

task since it requires a lot of effort for collecting and processing the related data. One 

of the most important sources of information for evaluating the safety and 

productivity of the construction equipment is the near real-time pose data of the 

equipment. Estimating the pose of articulated equipment (e.g. excavator) depends 

highly on the correct detection of the parts. Focusing on excavators, this research 

aims to investigate the potential of detecting the equipment parts as a fundamental 

step toward pose estimation by developing a comprehensive database of synthetic 

images of the excavator and its parts from various views with different scales and 

light conditions and applying the detectors trained using the mentioned database on 

the images and video frames recorded from the construction sites. In the following 

section, previous studies that focused on equipment pose estimation are reviewed. 

Azar and McCabe (2012) described a novel approach for articulated 

equipment recognition and pose estimation. They reviewed the concept of the latent 
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are the spatial, temporal, and semantic contexts. Having the mentioned data ready on 

hand, their model can detect the event, classify its state, and recognize the ongoing 

scenario. Later on, Gong et al. (2011) extended the previous research by using Bag-

of-Video-Feature-Words and Bayesian network models to learn and classify the 

actions of the workers and the equipment  

Another research done by Golparvar-Fard et al. (2013) presented an approach 

for learning and classifying the equipment actions. The method extracts the spatio-

temporal features of the equipment actions from the video frames of the related 

construction processes. These features are then used to generate the Histogram of the 

Oriented Gradient (HOG) feature descriptors to create the code words using k-Means 

clustering technique. A multi-class SVM classifier learns the distribution of the code 

words and applies it to the new videos to recognize the equipment action classes. The 

proposed method was tested on the videos containing an excavator and a truck, and 

the accuracies of 86% and 93% were achieved, respectively.  

Furthermore, a framework named Server-Customer Interactive Tracking 

(SCIT) was proposed by Azar & McCabe (2013) and extended by Azar et al. (2013). 

The system, which consists of image and video processing module, spatio-temporal 

reasoning module, and action recognition module, can detect and track the machines 

and recognize their activities. The worst accuracy provided from eight site visits was 

86%, and the best one was 100% while the average was 95%. 

Soltani et al. (2015) investigated the approach of annotating the images 

automatically using a 3D model of the object to recognize in the images of 

construction sites. The results showed that the proposed automatic annotation method 

using synthetic images can play the role of real images captured from the construction 

site for training purposes. Moreover, the automatic annotation significantly reduced 

the required time for defining Region of Interest (ROI) more than 90% compared to 

traditional annotation methods while the accuracy of the object recognition is 

improved by training more synthetic images. 

 

2 METHODOLOGY 

Reviewing the literature motivated the authors to propose a new method for 

estimating the pose of the construction equipment. The method can be applied on 

single images whether they are static images or separated frames of a video. In other 

words, in the proposed method, the temporal information of the target objects in the 

preceding and succeeding frames is not involved in the process for estimating the 

pose of the equipment. The framework of the proposed method is presented in Figure 

2. Training the equipment parts� detectors requires positive image dataset and 

negative image dataset. The positive images are created using the concept of the 

synthetic images proposed by Soltani et al. (2015) and the part detectors are trained 

using the generated positive and negative samples. 
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Figure 2. Process of recognizing equipment parts 

 

The synthetic images based on the 3D model of construction equipment can 

be used for training the detector, which can recognize the target object within a new 

dataset. The trained detectors are then applied on the cropped frames to find the parts 

of the equipment. The following sections explain the details of the generation of 

positive and negative images. 

 

2.1 Generation of Positive Images 

The 3D model of the equipment is assumed to be available for creating the 

synthetic images. Using the method proposed by Soltani et al. (2015), the around-

view images of the equipment with a single color background are created within the 

3D modeling tool by the server. These images are then used for creating the synthetic 

images by integrating the real images of the construction sites as their background. 

Additionally, each part of the equipment is used for generating the part-based image 

datasets where the other parts are hidden. This process results in four datasets for the 

excavator�s parts (i.e. dipper, boom, body, and bucket).  
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Figure 6. Equipment image database structure 

 

Although this database covers all views of the equipment, some views may 

not be used for the training phase, or they may be used only in special cases. For 

instance, the view of the equipment at -25û, -35û, -45û, -55û, -65û or -75û can be used 

in a case when the equipment is working on the top of a hill, but the camera is located 

on the ground down to the hill. Therefore, all views are stored in the database for any 

further possible application. 

 

Table 1. Equipment image database layers 

Data Structure Excavator Database Sub-Database Dataset 

Content 5 Sub-Databases 17 Datasets 360 Images 

Number of Images 30,600 6,120 360 

 

3.1 Experiment on Static Images 

In the first test, three detectors are trained and evaluated for each part, and the 

result of each detector is compared with the other detectors. In all trained detectors, 

15 backgrounds, including one white color background, are used to generate the 

synthetic images. Moreover, three lighting conditions are applied to the created 

images. For each part, three cases are considered to be evaluated. The first detector is 

trained using the images viewed from the latitude of -5û to +55û and 45û to 135û on 

the horizontal axis considering one size of the object which is the largest possible size 

of the equipment in one image. The total generated synthetic images are 28,665 (91 

images from one-quarter of the around-view multiplied by 3 light conditions, 15 

Construction Research Congress 2016 986

© ASCE

https://www.civilenghub.com/ASCE/163139677/Construction-Research-Congress-2016-Old-and-New-Construction-Technologies-Converge-in-Historic-San-Juan?src=spdf


 
 

backgrounds, and 7 latitudes). The second case covers from the latitude of +5û to 

+45û and 45û to 135û on the horizontal axis considering one size of the equipment 

with 20,475 images (91 images from one-quarter of the around-view multiplied by 3 

light conditions, 15 backgrounds, and 5 latitudes). The third case contained 61,425 

images from latitude of +5û to +45û and 45û to 135û on the horizontal axis considering 

three sizes of the object which are the largest, half, and quarter size of the equipment 

in one image (91 images from one quarter of the around-view multiplied by 3 light 

conditions, 15 backgrounds, 5 latitudes, and 3 sizes). This process is repeated three 

times for the dipper, boom, and body. The bucket results were for not reliable because 

the bucket is usually covered by dirt and soil and it is very hard to differentiate it 

from the soil. 

Regarding the negative samples, the auto negative sampler generates 1,600 

images randomly out of 14 backgrounds (15 minus one white color background) as 

the fixed negative dataset. Moreover, for case one, 114,660 images including 85,995 

images of the other parts except the target part and 28,665 images of the positive 

images while the target part is deleted from them. The variable numbers of the 

negative images follow the same procedure as in case one and are added to the fixed 

negative samples as explained before. 

 

Table 2. Tests configurations 

 Vertical Range Horizontal Range Size(s) Positive Images Negative Images 

Case 1 -5û - 55û  45û - 135û  Single  28,665 116,260 

Case 2 5û - 45û  45û - 135û  Single 20,475 83,500 

Case 3 5û - 45û  45û - 135û  Three  61,425 247,300 

 

The results achieved for detecting the dipper shows that the precision and 

accuracy of the detections are reduced by decreasing the latitude angles and 

increasing the number of sizes of the dipper (Table 3). That could happen based on 

the fact that the shape of the dipper is somehow symmetric; therefore, including 

multiple sizes of the dipper during the training phase led to the detection of other 

objects in the scene which look similar to the dipper. 
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Table 3. Results of experiment on static images 

 Precision (%) Recall (%) Accuracy (%) 

Dipper 

Detector  

Case 1 54 93 52 

Case 2 40 100 40 

Case 3 10 100 10 

Boom 

Detector  

Case 1 64 100 64 

Case 2 80 98 78 

Case 3 86 98 84 

Body 

Detector  

Case 1 29 100 29 

Case 2 32 100 32 

Case 3 56 100 56 

 

On the other hand, for the boom and the body, the results are opposite, and the 

precision and accuracy are increased by reducing the latitude angles and increasing 

the number of the sizes. This could be explained by the fact that the body (and 

specially the boom) looks unique and not symmetric; therefore, for cases two and 

three, the trained detectors have more chances to detect their target correctly. 

Regarding the recall, since the target objects are assumed to be always available in 

the scenes, there is no possibility for the true negatives, and the recall values have an 

opposite behavior compared to the precision and accuracy. 

 

3.2 Experiment on Video Frames 

This test is done on a construction site in Vancouver. The best detectors from 

Section   3.1 are selected to apply on the video acquired from the construction project. 

The detectors used in case one, case two, and case three for the dipper, boom, and 

body, respectively, are considered in this experiment.  

The results in Table  3 show that there is no false negative detection. Also, 

there is no true negative since the excavator is always available in all video frames. 

The detectors perform well by achieving accuracies of 95% and 97% for the dipper 

and boom, respectively. However, the accuracy and precision of the body�s detector 

are 48%, which is not satisfactory and needs to be further investigated. 
 

Table 4. Results of experiment on video frames 

 Precision (%) Recall (%) Accuracy (%) 

Dipper 95 100 95 

Boom 97 100 97 

Body 48 100 48 

 

4 CONCLUSIONS AND FUTURE WORK 

In this paper, the proposed equipment parts� detection method was discussed. 

Before starting the pose estimation algorithm, it was necessary to create a 

comprehensive image database for the target equipment and its parts. Furthermore, 
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the database was used for training multiple CV detectors. The process of generating 

and annotating the images were performed using the method proposed in   Soltani et 

al. (2015). The equipment parts� detectors were applied on the video/images from 

construction sites to search for the parts. Two experiments were done on the static 

images and video frames to validate the performance and capability of the proposed 

method. The results showed that reliable accuracies were achieved by applying the 

proposed method on the video frames. Moreover, the performance of High 

Performance Computing (HPC) on generating and annotating the image database 

showed that using more processors could dramatically reduce the required time.  
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