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temperature difference between day and night or the one experiencing cross seasonal 

construction. The reinforcement amount of circle beam support should be increased to 

resist the adverse effects of the axial force increasing with temperature raising and the 

bending moment increasing with temperature decreasing. During construction process, on 

the other hand, the support can be protected against the sun or be drenched with water to 

lower the temperature of support with the arrival of summer while the warm-keeping 

measures, such as covering, should be taken with the arrival of winter to ensure the safety 

of excavation and surrounding environment. 
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ABSTRACT 

At present, the effect of deep excavation on piles about the force and deformation had been 

paid more and more attention, but the mechanism of deep excavation on load transfer and 

settlement of pile was not very clear. Using ABAQUS software, a two-dimensional 

axisymmetric finite element model, considering pile length, excavation depth, and over 

consolidation, was modeling under three different conditions to analyze the influence of 

unloading effect and rebound effect on the engineering piles stiffness. Comparative analysis 

showed that vertical stiffness loss of pile was mainly caused by rebound effect before reaching 

inflection point load and the rule was all the same as pile length changed. Then, unloading effect 

gradually becomes the main cause of vertical stiffness loss. In addition, when the size of pit 

reached certain limit value, continuing to increase the size had less influence on the stiffness and 

ultimate bearing capacity of pile. The over consolidated effect significantly increased the vertical 

stiffness of pile. 

KEYWORDS: unloading effect; rebound effect; pile; foundation pit; FEM 

1 INTRODUCTION 

The development of underground cavity in Tianjin was very rapidly in recent years and the 

depth of pit engineering becomes deeper and deeper. Many engineering examples reflected the 

problem of the influence on engineering pile with the excavation of pit and it was distracted 

more and more scholars’ attention. 
Iwasakietal (1994) found that with the increase of excavation depth, counterforce on the pile 

head and axial force of pile body continued to increase, the pile tensile stress appears with the 

increase of excavation depth by monitoring the changes of axial force on the excavation pile 

body; Zhu Huogen (2005) introduced that pile was pulled in pit engineering because of rebound 

of foundation pit in the Shanghai accident. The pit was 13 m deep and effective pile length was 

30~37 m long, reinforcing cage was 13 m long. After the pit was finished, the low strain 

dynamic test found that 30% of piles broken at the bottom of the reinforcing cage. Chen 

Xiaoxian (2006) reported a foundation pit engineering in Xiamen, the pit was 7 m deep and the 

water level was decrease to 1 m under the bottom of pit, the 25% of engineering pile occurred 

fracture when excavation and foundation pit finished because of the pit rebound. Mao-song 

huang (2007), analyzed the influence of deep excavation on uplift piles include constant cross 

section and pedestal pile by the method of finite element (FEM). Some papers studied the 

mechanical characteristics of engineering piles by the finite element method and model test. 

Zheng Gang (2009) studied the mechanism of load transfer and settlement of the pile loaded 

after deep excavation with FEM, but without considering the consolidation of soil, pile length, 

the influence of other factors such as the width and depth of pit. In this paper, these factors and 
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the excavation unloading and the rebound effect was coupled, further revealed the load transfer 

and settlement mechanism of pile in the deep excavation. 

2. INTRODUCTION OF THE FINITE ELEMENT MODEL 

2. 1 Finite element model 

In the finite element analysis, a two-dimensional axisymmetric model was created to 

simulate the behavior of the excavation using the commercial finite element software, Abaqus. 

Entity element was used to simulate the pile, soil and the retaining wall. Four-node axisymmetric 

reduced integral element (CAX4R) was used for the pile and the retaining wall, while the four-

node axisymmetric element (CAX4) was for the soil. The struts adopt the two-node linear 

axisymmetric element (CAX1). As shown in Figure 1, The pit was 40 m wide with the 

excavation depth of 20 m. Retaining wall was 40 m long and 1.0 m thick. Inner pile was 40 m 

long and 1.0 m in diameter and installed below the bottom of the pit. Retaining wall and pile 

were constructed prior to excavation. The soil layers were extended to 140 m deep, which was 80 

m from the bottom of pile to the bottom boundary and was approximately 2 times length of the 

pile. The horizontal distance from the margin of the pit to the vertical of the model was 120 m, 

which is approximately 6 times half-width of the excavation. It was generally believed that when 

the size of the numerical model was 5 times larger than the loading area, the boundary effect can 

be ignored. This approach was also used in this study. Therefore, the influence of the bottom and 

horizontal boundaries on the numerical results can be ignored. The mechanical boundary 

conditions were set as follows: on the left and right sides, the horizontal displacements were set 

to zero while the bottom boundary was fixed in horizontal and vertical directions. 

 
Figure 1. Model of finite element method. 

2.2 Material properties 

The properties of all the materials used in the numerical model were provided in Tables 1. 

The master-slave surface-surface contact without thickness and penalty function algorithm were 

adopted to simulate pile–soil and retaining wall-soil. The Coulomb frictional law was 

implemented in interface modeling and friction coefficient of 0.35 was adopted according to Ou 

C. Y．and Roscoe KH. The piles, struts and the retaining wall adopted the linear elastic material 

and Elastic modulus of 3×104 MPa and actual density of 2500 kg/m3 were used to define the 
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mass property of concrete. The soils were modeled as Modified Cam–Clay (MCC) materials. 

The MCC model included five material parameters: slope of swelling line, κ; slope of virgin 

consolidation line, λ; the void ratio, e; slope of the critical state line, M; and Poisson’s ratio, ν. 
The values of λ, κ, and e were obtained from one-dimensional consolidation tests. The value of 

M was obtained from the triaxial consolidated undrained tests with measured pore water 

pressure. The permeability values of the soils were assumed to be consistent with the empirical 

values in the Tianjin area, and their values were assumed to be equal in vertical and horizontal 

directions in the numerical analysis.  

Figure 2 shows the measured and computed curves of Q-S. It is shown that the computed 

results agree reasonable well with the measured data. Therefore, the finite element model and 

parameter mentioned above provide a reliable way to investigate different working conditions 
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Figure 2. Comparison of results from computer and measured. 

Table 1. Parameters of Subsoil 

Layer Soil type 
Depth 

/m 

Unit 

weight 

kN/m3 

λ κ M e 

1 Fill 2.1 19.1     

2 Mucky clay 6.2 18.7 0.089 0.013 0.43 0.9 

3 Silty clay 10 20.2 0.076 0.0064 0.46 0.8 

4 Mucky clay 16.3 17.9 0.0792 0.0065 0.46 0.85 

5 Silty clay 24.3 20.6 0.032 0.0041 0.91 0.72 

6 Silty sand 51.5 20.1 0.0221 0.0035 1.21 0.62 

7 Silt 55 20.3 0.0267 0.0038 1.19 0.64 

8 Silty clay 69.2 21.1 0.0334 0.0048 0.80 0.75 

2. 3 Working conditions 

In order to compare the effect of unloading and rebounding on the pile, three kinds of 

methods of pile tests were designed with controlling variable method. The first kind of methods 

of test pile was with sleeve(PTS), which added casing to isolate the friction of the pile and soil 

within the scope of excavation, and then loading. (see Figure 3(a)). The second method was 

carrying out pile test at the pit-bottom(PTPB), which reactive the pile after finishing the 
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excavation and then loading at the bottom of the pit. (see Figure 3(b)). It could eliminate the 

effect of the rebounding of soil which made the whole pile be in tension and determined alone 

the effect of the unloading of soil on the rigidity of the pile. The last pile test was conducted 

while excavating(PTE). Compared with the second way, it could determine alone the effect of 

soil resilience on the rigidity of pile. (see Figure 3(c)).   

 
Figure 3. Plots of different methods. 

3. RESULTS OF DIFFERENT CASES 

3.1 Comparison of Q-S curves 

As shown in Figure 3，there was three curves of Q-S by different kind of pile tests. Because 

of loading on the top of pile which flushed with the ground, the settlement of the PTS deducted 

the amount of pile compression within the length of excavation. The ultimate bearing capacity 

could be defined as the load corresponding the settlement which up to 0.1 times pile diameter 

and the knee point load could define as the load corresponding the start point in the period of the 

sharp drop at the Q-S curve. 

 
Figure 4. Q-S curves of different methods.  

It could be found from the figure 4 that, the Q-S curves of PTS and PTPB were very close 

before the inflection point load, as a result, the unloading effect on the stiffness loss of 

engineering pile didn't do too much. At the same time the knee point load of the PTPB’s Q-S 

curve was same as the PTE’s, and the settlements corresponding the knee point load reached to 
maximum between both. Conclusion could be drawn that, before reaching the knee point load the 

vertical stiffness loss of the pile mainly derived from the soil resilience. After the knee point 

load, with the increase of the loading on the top of pile, the resilience effect wore off and the 

unloading effect grown up as the primary reason of the vertical stiffness loss of piles. 
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Compared the Q-S curves of PTPB and PTE, the stiffness loss of the PTPB reached the 

maximum value, in other words, the soil resilience because of excavation on the stiffness loss 

had the biggest impact. Compared to the PTS, the ultimate bearing capacity was reduced by 

16.5%, the knee point load was reduced by 20%. And so that the unloading effect and resilience 

effect decreased the vertical stiffness of pile obviously. 

3.2 Impact analysis of soil unloading and rebound on pile’s stiffness 

3.2.1 Impact of different pile length 

The Figure 5 presented Q-S curves of three kind of pile tests at different pile length case. The 

marked pile diameter was 0.8 m, the length of the pile was 30~70 m (added a model per 10 m). 

The knee point load(KPL), the settlement corresponding the knee point load(SKPL) and the 

ultimate bearing capacity(UBC) of three kind of pile tests at different pile length cases were 

shown in the Table 2. The unloading effect and soil resilience effect could be studied from the 

fig and the table at different pile length on the stiffness and ultimate bearing capacity of pile. 

 
Figure 5. Q-S curves of different pile length. 

Under the standard excavation condition (R=40 m，H=20 m), the Q-S curve of PTE was 

same as PTS’s basically before reached the KPL with the change of pile length. And the KPL of 

PTE was same as PTPB’s basically. So with the increase of the pile length, the vertical stiffness 
loss mainly derived from the soil resilience before the KPL. And then the unloading effect would 

be primary reason of the loss of ultimate bearing capacity and vertical stiffness of pile.  

With the change of the pile length, the KPL remain equal between PTE and PTPB, but the 

settlement corresponding the KPL respectively increased by 90.3%、84.4%、70%、58.2%、
43.8%. So the effect of the resilience decreased the vertical stiffness of pile obviously, and with 

the increase of the pile length, the effect of the soil resilience gradually decreased. 
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Table 2. Impact Comparison of Different Pile Length 

Length L/m 
KPL/kN SKPL/mm UBC/kN 

PTS PTPB PTE PTS PTPB PTE PTS PTPB PTE 

30 5526 3517 3517 20.28 12.34 23.48 7310 5526 5300 

40 7536 6029 6029 23.83 20.16 37.02 9658 8062 7680 

50 9546 8038 8038 30.35 25.02 42.59 11807 10450 9750 

60 12058 10048 10048 44.11 32.24 51.4 13778 12560 11618 

70 14570 12560 12560 52.81 44.79 66.42 16077 14444 13364 

3.2.2 Influence of the different width and depth of the pit 

Figure 6 presented different Q-S curves of different types of standard excavation(R/H=2). 

Four models were built, and the depth of the excavations respectively were 10 m, 20 m, 30 m, 40 

m. The knee point load(KPL), the settlement corresponding the knee point load(SKPL) and the 

ultimate bearing capacity(UBC) of three kind of pile tests at different pile length cases were 

shown in the Table 3.  

 
Figure 6 Q-S curves of different pit sizes. 

As shown in Figure 6 and Table 3，the ultimate bearing capacity .KPL and settlement 

corresponding KPL stay the same when the size of the excavation was over R=40 m，H=20 m. 

It shown that the effect of the pit size on the vertical stiffness and the ultimate bearing capacity 

was small.  
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Table 3. Impact Comparison of Different Pit Sizes 

Size（m）： 

R/H=2 

KPL/kN SKPL/mm UBC/kN 

PTS PTPB PTE PTS PTPB PTE PTS PTPB PTE 

R=20， 6028 5526 5526 17.46 18.27 26 8402 7181 7085 

R=40， 7536 6029 6029 23.83 20.16 37.02 9658 8062 7680 

R=60， 8541 6029 6029 21.48 19.47 40.35 10984 8357 7707 

R=80， 8541 6029 6029 18.54 18.72 42.27 11605 8368 7800 

3.2.3 Influence of the soil overconsolidation 

The soil at the bottom of the pit was in state of the over-consolidated, but the finite element 

software only provided initial normal consolidation coefficient without considering the factor of 

the soil overconsolidation. In order to study the influence of the soil overconsolidation, the soil 

was divided into 8 layers. Over-consolidation ratio was calculated according to the following 

formula using the variation of effective stress located in neutral position of each layer. (α=0.56). 

 maxv

v

OCR







  (1) 

 
0( ) 0( )OC NC

K K OCR
    (2) 

Table 4 presented the OCR and coefficient of earth stress at rest (K0) 

Table 4. OCR and Earth Stress Coefficient of Each Layer  

Layer  Buried depth before /m 
Buried depth  

after /m maxv
  /kPa 

v
  /kPa OCR K0(OC) 

1 25 5 265 53 5 1.33 

2 35 25 371 265 2.33 0.86 

3 45 35 477 371 1.8 0.75 

4 55 45 583 477 1.57 0.69 

5 70 55 742 583 1.4 0.65 

6 90 70 954 742 1.29 0.62 

7 110 90 1166 954 1.2 0.6 

8 130 110 1378 1166 1.18 0.59 

Figure 7 presented the comparison of the earth stress coefficient between overconsolidation 

and normal consolidation. The KPL of the PTE was 6028.8 kN and the UBC was 8038.4 kN by 

adopting the overconsolidation earth stress coefficient. The KPL of the PTE was 5526.4 kN and 

the UBC was 7680 kN by adopting the normal consolidation coefficient. The KPL and UBC of 

the pile respectively decreased by 8.3%、4.5% with normal consolidation earth stress coefficient 

. This is due to that using the over-consolidated soil pressure coefficient increased the horizontal 

stress level of the pit soil, which in turn increased the normal stress of pile. So, the vertical 

deformation stiffness and ultimate bearing capacity of pile had improved. Figure 8 presented the 

comparison of the Q-S curves between PTS and PTE considering the soil overconsolidation 

effect. The loss of UBC decreased by 16.8% because of excavation. And the loss of UBC 

decreased by 20.5% without considering the soil overconsolidation effect. 

https://www.civilenghub.com/ASCE/165238342/Transportation-Research-Congress-2016-Innovations-in-Transportation-Research-Infrastructure?src=spdf

	9780784481240.fm.pdf
	Final p i Title Transportation Res Cong 2016.pdf
	Final p ii Notices Transportation Res Cong 2016.pdf
	Final p iii-iv Preface Transportation Res Cong 2016.pdf
	toc.pdf

	9780784481240.001.pdf

