Structures Congress 2017

Business, Professional Practice, Education, Research, and Disaster Management

Selected Papers from the Structures Congress 2017 Denver, Colorado April 6–8, 2017

EDITED BY J. G. (Greg) Soules, P.E., S.E., P.Eng

This is a preview. Click here to purchase the full publication.

STRUCTURAL ENGINEERING INSTITUTE

Structures Congress 2017

Business, Professional Practice, Education, Research, and Disaster Management

SELECTED PAPERS FROM THE STRUCTURES CONGRESS 2017

April 6–8, 2017 Denver, Colorado

SPONSORED BY The Structural Engineering Institute (SEI) of the American Society of Civil Engineers

EDITED BY J. G. (Greg) Soules, P.E., S.E., P.Eng

Published by the American Society of Civil Engineers

Published by American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia, 20191-4382 www.asce.org/publications | ascelibrary.org

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document. ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefor. The information contained in these materials should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing such information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers—Registered in U.S. Patent and Trademark Office.

Photocopies and permissions. Permission to photocopy or reproduce material from ASCE publications can be requested by sending an e-mail to permissions@asce.org or by locating a title in ASCE's Civil Engineering Database (http://cedb.asce.org) or ASCE Library (http://ascelibrary.org) and using the "Permissions" link.

Errata: Errata, if any, can be found at https://doi.org/10.1061/9780784480427

Copyright © 2017 by the American Society of Civil Engineers. All Rights Reserved. ISBN 978-0-7844-8042-7 (PDF) Manufactured in the United States of America.

Preface

The Structures Congress has a robust technical program focusing on topics important to Structural Engineers.

The papers in the proceeding are organized in 4 volumes

Volume 1 includes papers on Blast and Impact Loading and Response of Structures Volume 2 includes papers on Bridges and Transportation Structures Volume 3 includes papers on Buildings and Nonbuilding and Special Structures Volume 4 includes papers on Other Structural Engineering Topics including; Business and Professional Practice, Natural Disasters, Nonstructural Systems and Components, Education, Research, and Forensics

Acknowledgments

Preparation for the Structures Congress required significant time and effort from the members of the National Technical Program Committee, the Local Planning Committee. Much of the success of the conference reflects the dedication and hard work by these volunteers.

We would like to thank GEICO and Pearl for Sponsoring the Congress proceedings and supporting the Structures Congress in such a generous way.

The Joint Program Committee would like to acknowledge the critical support of the sponsors, exhibitors, presenters, and moderators who contributed to the success of the conference through their participation.

On behalf of our dedicated volunteers and staff, we would like to thank you for spending your valuable time attending the Structures Congress. It is our hope that you and your colleagues will benefit greatly from the information provided, learn things you can implement and make professional connections that last for years.

Sincerely,

J. Greg Soules, P.E., S.E., P.Eng, SECB, F.SEI, F.ASCE

Contents

Business and Professional Practice

A Case Study of Logan International Airport's Terminal C to E Connector: Structural Challenges and Risks for Existing Building Projects	
Open BIM Workflow in Project Processes	
Nowadays Structural Engineering with the Use of BIM Technology—From 3D Modeling, Structural Analysis, and Design to Structural System Evolution: Practitioner Report	
Knowledge Collaboration: A Success Factor in Developing Structural Engineering Experts	
Education	
Educating Future Structural Engineers through Project-Based Learning47 Kurt M. McMullin	
Hands-On Bridge Engineering Outreach Activity54 Jason Salonga	
Flipping the Capstone: Can Doing It Wrong Be Right?65 Stanley P. Rader	
Educating Engineers to Create Economic and Elegant Bridges83 Paul Gauvreau	
Origins of the Profession: The Role of History and Design in the Education of Structural Engineers	

Natural Disasters

Social Vulnerability Mapping Considering Hurricane Hazards in a Changing Climate
Earthquake and Tsunami Resiliency Assessment for a Coastal Community in the Pacific Northwest, USA
Reality Capture for Tornado Damage to Structures
The Feasibility of Using Smart Devices for Quantifying Seismic Damage to Buildings
Seismic Assessment of a Reinforced Concrete Frame Beam Column Connection Extracted from an Earthquake-Damaged Building155 Giulio A. Leon, Paul C. Rizzo, Reza V. Farahani, Hussien Abdel Baky, and Benjin Zhu
Quantifying Structural Impact Demands Due to Tsunami-Generated
Christina Cercone, Clay Naito, H. R. Riggs, and Robert Schellberg
The Impact of Temporal and Spatial Variation in Building Codes on the Hurricane Wind Vulnerability of Residential Single Family Homes183 Sarah Bobby, Tim Johnson, Bahareh Kordi, Farid Moghim, and Karthik Ramanathan
Nonstructural Systems and Components
Nonstructural Component Seismic Spectral Accelerations in Two Existing Steel Buildings with Supplemental Damping
Performance of Exterior Precast Concrete Cladding Panels in NEES-TIPS/E~Defense Tests on a Full-Scale 5-Story Building209 Kurt M. McMullin and Kanotha Kamau-Devers
Horizontal and Vertical Seismic Acceleration Demands in Multi-Storey

Buildings 232 Lisette Ludena, Maryam Asghari Mooneghi, Mohammadtaghi Moravej, Arindam Gan Chowdhury, and Peter Irwin
Research
Freeze and Thaw and Thermal Fatigue Resistance of LMM Incorporating CNT
Behavior and Strength Characteristics of Cross-Laminated Timber Mats: Experimental and Numerical Study254 Mustafa Mahamid, Tom Brindley, Nicholas Triandafilou, and Slawomir Domagala
Finite Element Modeling of Nailed Connections in Low-Rise Residential Home Structures 269 Jeffrey Weston and Wei Zhang
Optimized Topologies for Steel Frames: Accounting for Buckling and Stress Criteria
Fatigue Behavior of Reinforced Concrete Beams with TemperatureDifferentials at Room and Low Temperatures292M. Mehdi Mirzazadeh, Martin Noel, and Mark Green
Effects of Crumb Rubber on Concrete Properties When Used as an Aggregate in Concrete Mix Design
A Damage Model for the Simulation and Assessment of Structures with Degrading Element Behavior
Finite Element Model of a Bamboo Composite I-Shaped Beam328 Hernan Castaneda and Sigridur Bjarnadottir
Epistemic Uncertainty in Solution Algorithms for Analyzing the Geometric Nonlinearity of Framed Structures
Bridge Classes for the Regional Risk Assessment of Box-Girder Bridges in California: Improving HAZUS Models

Estimation of Wind Loads on the Balcony Glass Handrails of Mid-Rise

Large Displacement Analysis of Fiber-Reinforced RC Members
Long-Term Fatigue Behavior of Aluminum Shoe Base Details Top Mounted Luminaries
Evaluation of the Flange Bending Capacity near Member Ends Using a Finite Element Analysis Approach
Capacity-Based Design for Cross-Laminated Timber Buildings400 Md. Shahnewaz, T. Tannert, M. S. Alam, and M. Popovski
Feasibility Study of a Novel Tall Concrete-Wood Hybrid System411 Kuldeep Kaushik and Thomas Tannert
Post-Tensioned Mass Timber Systems419 Asif Iqbal and Marjan Popovski
Traffic-Based Condition Assessment and Fatigue-Life Predictions for a Highway Bridge
Performance and Accuracy of Fibre Optic Sensors and the Digital Image Correlation in Measuring the Strains and Crack Widths of Concrete Structures
Temperature-Driven Assessment of a Cantilever Truss Bridge461 B. R. Murphy and M. T. Yarnold
Automated Detection of Corrosion Damage in Power Transmission Lattice Towers Using Image Processing474 Bhavana Valeti and Shamim Pakzad
Non-Contact Based Structural Damage Detection Using Stochastic Subspace Identification and a FEM Updating Method483 Li Yang, Young Hoon Kim, Jeffrey R. Hay, and John Kielkopf
The Citizen Engineer: Urban Infrastructure Monitoring via Crowd-Sourced Data Analytics

Identifying the Extent and Location of Damage in a Reinforced Concrete Girder Using Health Monitoring Data	511
 A. Cancent, E. Michen, A. Anpour, S. Lananine, and S. Shtharan Finite Element Analysis of the Damages and Failures of RC Structural Components	522
Seismic Anchorage of Dry Storage Casks Using Stretch Length Anchors J. E. Parks, C. P. Pantelides, L. F. Ibarra, and D. H. Sanders	534
Design of Wall Structures for In-Plane and Out-of-Plane Forces: An Exploratory Evaluation Saahastaranshu R. Bhardwaj and Amit H. Varma	546
A Study of the Damping Provided by Buckling-Restrained Braces (BRBs) within Their Linear-Elastic Response Héctor Guerrero, J. Alberto Escobar, and Roberto Gómez	558

A Case Study of Logan International Airport's Terminal C to E Connector: Structural Challenges and Risks for Existing Building Projects

Ryan Couto, P.E., LEED AP $BD+C^1$; and Deidre Ericson, EIT, LEED AP $BD+C^2$

¹WSP | Parsons Brinckerhoff, 75 Arlington St., 9th Floor, Boston, MA 02116. E-mail: couto@pbworld.com

²WSP | Parsons Brinckerhoff, 75 Arlington St., 9th Floor, Boston, MA 02116. E-mail: ericsond@pbworld.com

Abstract

This paper explores some of the key challenges and risks faced by structural engineers when working with existing building structures as well as identifies potential cost- and schedule-saving approaches that can streamline the design process and maintain the integrity of the anticipated scope and project quality. Often times, structural engineers enter into the design phase with incomplete existing documentation and limited access to carry out the full-scale site investigations needed to observe and record the existing structural conditions. Utilizing a case study of the recently completed \$54 million Logan International Airport Terminal C to E (C2E) Connector project, this paper explores various approaches that structural engineers can use during the design phase to expedite the building systems coordination through the use of building information modeling (BIM) tools, laser scanning, and selective localized demolition. These approaches can help minimize unforeseen conditions when the construction begins, thus ultimately helping to mitigate costly change orders and schedule delays that would be required to accommodate these unknown conditions. Successful completion of the C2E project required in-depth understanding of the original construction, subsequent renovations of both terminals (C and E), coordination between adjacent concurrent construction projects, and collaborative construction sequencing to ensure minimal disruptions to airport operations, while maintaining containment of post-security areas. Additionally, early engagement and integrated project team collaboration with the Contractor can serve to identify critical enabling packages and project milestones. This facilitates efficient and timely completion of the structural design and the complex phasing required to satisfy operation of a fully active project site open to the public and coordination with overlapping scope of adjacent projects. Throughout this paper, a number of projectspecific items are explored to further support the impact of the above-described design approaches and efforts as a way to minimize the challenges and risks faced by structural engineers when working with existing building structures.

1 INTRODUCTION

Massachusetts Port Authority, as the Owner and Operator of Boston's Logan International Airport, has a long-term plan of post-security connectivity across all terminals. The Terminal C2E Connector project served to realize a key portion of this