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Abstract 

Building codes evolve as engineers and scientists learn more about the destructive capability of 

natural phenomena and how to design structures to effectively withstand these extreme events. 

The 2012 building and residential codes published by the International Code Council have 

recently seen significant updates to the wind hazard and design criteria, and have generally 

decreased the design wind speeds along much of the hurricane-prone East and Gulf Coasts. 

Catastrophe models, which integrate a stochastic hazard with views of building vulnerability in 

order to provide reliable risk estimates, can be used to quantify the impact of spatial and 

temporal building vulnerability changes.  This study quantifies the impact of the building code 

related changes in a catastrophe modeling framework using a sophisticated hurricane model and 

an actuarial metric: average annual loss. A resulting discussion is provided detailing the 

implications of this study. 

INTRODUCTION  

Natural disasters serve as a litmus test for building code effectiveness and often act as catalysts 

for significant code overhauls when Mother Nature asserts her dominance.  For instance, 

following the devastating effects of Hurricane Andrew in 1992, significant advances were made 

in building technology, material, and construction practices (Florida DCA, 2008).  Around the 

same time, organizations such as the International Code Council (ICC) emerged with the sole 

purpose of developing a single set of comprehensive and coordinated model building codes that 

are implemented today across nearly all coastal hurricane prone states in the United States.  In 

addition to the evolution of building codes such as the Council of American Building Officials 

(CABO) One and Two Family Dwelling Code, the Standard Building Code (SBC), and the ICC 

codes, the load standards referred to in these codes (see, e.g. American Society of Civil 

Engineers (ASCE) ASCE-7 standard (2010)) also evolve due to new research.  Some updates are 

quite impactful, while other updates are less significant. For example, the 2012 update to the 

ICC�s Building and Residential Codes, along with updates to the referenced ASCE 7-10 standard 

caused significant changes to the design wind speeds and wind borne debris regions in a number 
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of hurricane states. Furthermore, code adoption and enforcement practices vary by state (see, e.g. 

IBHS (2015) and ISO (2015)), and it is often the case that individual counties or cities amend 

building codes to their liking. Without the occurrence of hurricane events, the effectiveness of 

the most recent building code is difficult to quantify, yet the need to do so remains. 

Catastrophe risk assessment models serve as excellent platforms to not only project 

potential future hurricane losses, but to also help test the impact of regional/local building codes 

and their effectiveness with respect to the exposed hurricane risk. These models integrate a 

stochastic hazard coupled with detailed views of building vulnerability in order to estimate 

reliable loss distributions. The aim of the current study is to investigate the impact of the 

evolution of building codes and wind load standards along with their enforcement on the wind 

vulnerability of residential homes in select states along the hurricane prone east coast of the 

United States. A modeling routine for catastrophic hurricane events (AIR Worldwide, 2016), 

which has been validated using past hurricane event claims data from insurance companies, will 

be used to assess the aforementioned impact measured in terms of probabilistic loss metrics. A 

case study is presented that examines the location-specific difference in vulnerability between 

two average single family homes, built before and after the 2012 ICC code adoptions in several 

hurricane states with different levels of code enforcement. In particular, these exposures are 

modeled in coastal and inland locations in South Carolina and Virginia and their vulnerability, as 

measured in terms of a commonly used actuarial metric, Average Annual Loss (AAL), is 

compared. Although many other hurricane states, including Florida, Louisiana, Georgia, and 

parts of Mississippi, to name a few, did adopt the 2012 ICC codes, an analysis including other 

states is out of the scope of this study. Discussion will be provided explaining the vulnerability 

differences among the considered locations and structure years-built. 

IMPORTANCE AND EVOLUTION OF BUILDING CODES 

Currently engineers in the United States follow two sets of guidelines, i.e., building standards 

and building codes, to design and construct a building and it is imperative to understand the 

differences between the two. Building standards are developed by professional organizations, 

such as ASCE, and offer in-depth provisions based on recent advancements in building, material, 

and construction research. They also furnish minimum design loads against certain atmospheric 

and geological natural hazards to protect the well-being of building occupants. Building Codes, 

on the other hand, are described by the Federal Emergency Management Agency (FEMA) as �� 

sets of regulations governing the design, construction, alteration and maintenance of structures;� 

in other words, building codes must be followed by law (FEMA 2016). Building codes are 

legally adopted by state and/or local jurisdictions through legislative processes and are enforced 

by local governments. They provide minimum life safety requirements for buildings and their 

occupants against certain hazards. Building standards are generally adopted by reference into the 

building codes. 

 Prior to 2000, three model building codes were enforced across the United States. The 

Building Officials and Code Administrators (BOCA) codes and enforcement personnel operated 

primarily in the Northeast and Midwest, the International Conference of Building Officials 

(ICBO) and its associated Uniform Building Code (UBC) were dominant in the West, and the 

Southern Building Code Congress International, Inc.�s (SBCCI) Standard Building Code (SBC) 

was used primarily in the South.  These three groups combined in 1994 and formed the 

International Code Council (ICC) in an effort to create code uniformity across the country 

(Listokin and Hattis, 2005).  The first edition of the ICC codes (e.g., International Building 
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Codes (IBC) and International Residential Codes (IRC)) was published in 2000, and new 

editions of the ICC codes are published regularly; generally, this occurs every three years.  

Currently, the majority of the country, and nearly all of the East Coast and Gulf hurricane states, 

use the ICC codes as the basis for state and local codes.     

In addition to the evolution of building codes the load standards referred to in these codes 

(e.g. ASCE 7) also evolve due to new research. Thus most of the changes to the building 

standards will eventually find their way to the building codes. For instance, the wind provisions 

of ASCE 7 are adopted by referenced in the ICC�s Building and Residential Codes and therefore 

changes to this standard also affect structures� vulnerability. As the majority of the significant 

changes in the wind section of IBC and IRC codes are due to the changes to the wind provisions 

of ASCE 7, this study examines the changes introduced in the latest version of ASCE 7 in order 

to evaluate the wind vulnerability changes over time. 

 In 2010, the ASCE 7 �Wind Loads� section went through its most comprehensive change 

since 1998, mostly due to the introduction of the new design wind speed maps. The ASCE 7 

basic wind speed maps defining the wind hazard had not changed from the ASCE 7-98 version to 

the ASCE 7-05 version of the standard.  ASCE 7-10 introduced a number of major changes to 

the wind speed maps, some of which are listed below:   

• Firstly, the maps involve a baseline design methodology shift from Allowable Strength 

Design (ASD) to Load and Resistance Factor Design (LRFD), which was implemented in 

order to make the wind and earthquake methodologies consistent   

• Secondly, risk category factors were introduced into the design wind speed maps, 

resulting in three unique maps: a map each for Risk Category I and II structures, 

respectively, and a separate map for Risk Category III and IV structures combined   

• The last change mentioned in this paper, and also the most significant change regarding 

structural vulnerability, has to do with the representation of the hazard itself.  This change 

is comprehensively described below, and was largely made due to new research 

indicating that the wind speed maps in ASCE 7-98 and ASCE 7-05 gave a conservative 

view of the wind hazard along the hurricane-prone East and Gulf Coasts  

 

ASCE design wind speed map hazard re-evaluation, changes, and impact. The design wind 

speed map significantly changed between the 2005 and 2010 versions of the ASCE 7 standard 

due to the incorporation of the most recent hurricane data. This recent hurricane data was used in 

determining wind speeds with given Mean Recurrence Intervals (MRIs). It was generally found 

that the previous estimates for the hurricane wind speeds were higher, especially along the 

hurricane-prone coastline.  Additionally, the design wind speed was given a consistent MRI in 

each risk category map (ASCE, 2010).  As stated in the Commentary of the previous versions of 

the standard, the previous basic wind speed maps yielded predictions of 50-100 year return 

period peak gust wind speeds along the coast (see, e.g. ASCE (2000)). As such, when translating 

the new maps to an ASD equivalent 50-year MRI design wind speed map, it is apparent that the 

changes generally result in lower design wind speeds (and therefore lower design wind 

pressures) along the hurricane prone region, while further inland the design wind pressures were 

mostly unchanged.  

 In addition, ASCE 7-10 re-introduced Exposure D as an applicable exposure category for 

hurricane-prone regions along the East Coast and Gulf of Mexico.  In ASCE 7-10 Exposure D 

applies to at least the first 600 feet from the coastline, as long as the water surface prevails 5000 

feet in the upwind direction. This partly compensates for the reduction of the design wind 
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velocity pressure in the coastal areas, where the Exposure D definition is applicable. Table 1 

below shows the ratio between the design wind velocity pressure in ASCE 7-10 and ASCE 7-05 

for select cities in three U.S. coastal states, two of which are discussed later in the paper. The 

table indicates the ratio of the velocity pressures between ASCE 7-10 and ASCE 7-05 in two 

cases: the first is for a structure classified using the same exposure category in both versions of 

the code, and the second is for a structure located within the first 600 feet of the coast, which 

would be classified as Exposure C in ASCE 7-05 and Exposure D in ASCE 7-10.  The 

comparison is done for a one-story (15-foot height) house (Category II).  It is important to note 

that the changes to the design wind speed maps also propagate to other specifications. For 

example, the wind-borne debris region, which is defined based on the design wind speed, has 

been significantly reduced in some hurricane states (ASCE, 2010).  

Table 1. The ratio between the design wind velocity pressure in ASCE7-10 and ASCE7-05 

for 15 ft. tall Category II buildings. 

State City 

Design Wind Speed
*
 

(mph) � 3 sec gust 

Velocity Pressure Ratio 

(ASCE 7-10 to ASCE 7-05) 

ASCE 7-05 ASCE 7-10 

Same 

Exposure 

Category 

Exp.D (ASCE 

7-10) to Exp.C 

(ASCE 7-05)
&

  

Virginia 

Richmond 90 115 0.98 N/A 

Virginia Beach 114 122 0.69 0.83 

Arlington 90 115 0.98 N/A 

South 

Carolina 

Myrtle Beach 131 148 0.77 0.93 

Columbia 95 115 0.88 N/A 

Charleston 131 147 0.76 0.92 

Mississippi 
Biloxi 139 160 0.79 0.96 

Jackson 91 115 0.96 N/A 

*Design wind speeds are taken from http://windspeed.atcouncil.org/  
&

N/A indicates that these cities are inland and exposure category D is not applicable 

BUILDING CODE ADOPTION AND ENFORCEMENT PRACTICES AT THE 

REGIONAL SCALE 

The vulnerability of structures is highly location dependent not only due to differences in hazard 

maps, but also due to differences in state adoption and enforcement practices (see Figure 1 for 

coastal state building code adoptions). Although it is obviously advantageous for state and local 

building code departments to adopt the latest building codes and begin enforcing these as soon as 

possible, there is generally a non-uniform lag in adoption due to many factors.  These include the 

financial, training, and personnel resources available to the departments in addition to the length 

and stringency of the procedures required by the legislature for official code adoption. Adoption 

may occur within a year of code publication in states which mandate an adoption deadline 

through the state building code agency. However, in hurricane prone states that do not require 

adoption by a state-mandated date, adoption in local jurisdictions (i.e. counties, cities, towns, or 

other incorporated or unincorporated areas with local ordinances) may occur several years after 
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protection no longer require opening protection as they now fall outside the wind-borne debris 

region. Additionally, ASD design wind speeds have been reduced by as much as 20 mph under 

the 2012 Building Codes. 

 

Implications in other states. As states start adopting the 2012 IBC and subsequent versions, the 

general consensus is that the wind provisions may be less stringent than earlier versions of the 

code, particularly along the northeast coastline. For instance, states like Georgia, Maryland, and 

Delaware have seen large reductions in design pressures and almost complete removal from the 

code defined �wind-borne debris region.� Other states, such as Florida and Louisiana, have also 

seen reductions in design pressures which ultimately affect the building strength. However, the 

design wind speed in the most vulnerable areas of states such as Florida and Louisiana near the 

coast is sufficiently high that although the wind-borne debris region has reduced, window 

protection is still required along the coastline and further inland in some counties.   

In contrast, in the state of Mississippi the adoption of the 2012 ICC codes has generally 

decreased the vulnerability of structures in some areas.  However, this is primarily due to the 

traditional lack of building code adoption in this state and the recent push to encourage 

jurisdictions to adopt building codes. In fact, building codes were not required in the state until 

after Hurricane Katrina. In response to the devastation Katrina brought five coastal counties, 

Jackson, Harrison, Hancock, Stone, and Pearl River, and their inclusive municipalities, these 

began to enforce the wind and flood mitigation requirements of the 2003 ICC Building and 

Residential Codes beginning in 2006 (Mississippi Legislature, 2006).  The remainder of the state 

was not required to adopt codes until Senate Bill 2378 was passed in 2014 mandating that county 

boards of supervisors or municipal governing authorities must adopt one of the last three 

versions of the International Building Code and International Residential Code, or must opt out 

of adopting codes by November of that year (Mississippi Legislature, 2014).  Although a 

significant number of municipalities did opt out of adopting codes (see Figure 2 for county 

adoption), this was a significant step for the state in ensuring that new structures are less 

vulnerable to natural hazards.  The jurisdictions that began adopting codes in 2014 would be 

expected to see an increase in building performance for new structures, assuming that the codes 

are well-enforced, regardless of the code adopted, due to the previous lack of code adoption.  

CATASTROPHE MODELING FRAMEWORK  

Figure 4 shows the framework for the subject hurricane model. The event generation and local 

intensity calculation modules together comprise the hazard module within the framework. The 

event generation module deals with so-called source parameters and answers questions about 

where events are likely to occur, how large or severe they are likely to be, and how frequently 

they are likely to occur. The task of this module is to simulate all types of possible, yet realistic, 

future scenarios. Upon generation of a potential future event probabilistically, the local intensity 

module propagates the event across the affected area by estimating the local intensity (such as 

location specific surface wind speed or storm surge depth). In this component as well as in the 

event generation component, detailed scientific and meteorological data and algorithms are 

employed to model the local effects of each simulated event. Windstorm models, for example, 

use high-resolution digital land use/land cover data to calculate surface frictional effects. 

Estimates of surface roughness dictate, in part, the behavior of ground level wind speeds. 
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