
A Transformational Approach to Teaching Matrix Structural Analysis,  

and Visual Implementation using Mathcad 

 

 

Author: 

 

Finley A. Charney, Virginia Tech, Blacksburg VA, fcharney@vt.edu 

 

 

INTRODUCTION 

 

At most universities, matrix methods of structural analysis are taught in the senior year, or in the 

first year of graduate study.  For students taking the course, the material may be very challenging 

because it has been several semesters since they have taken the prerequisite courses (generally 

linear algebra and theory of structures).  More problematically the course is challenging because 

many of the students have had little exposure to computer programming.   

At Virginia Tech, the course Computer Methods of Structural Analysis I (CEE 4404) has 

been designed to minimize these challenges, but still provide a firm theoretical basis in matrix 

structural analysis.  The theoretical basis of the course is rooted in the concepts of equilibrium, 

compatibility, and superposition (requiring linear-elastic constitutive laws), and is presented in 

the context of four different levels of “Scope” within a structure.  A key aspect of the course is a 

heavy reliance on a variety of mathematical transformations that relate the levels of scope to 

each other.  Because of the reliance on transformations, the methodology described in this paper 

is termed the “Transformational Approach” to teaching matrix structural analysis. 

The implementation of the method is facilitated through the use of the commercial 

mathematics program Mathcad
1
.  Mathcad is used in two ways; first as a visual matrix 

manipulation tool, and second, as a framework for writing complete structural analysis programs.  

While a variety of programming platforms could be used (e.g. C++, C#, Visual Basic, Matlab
2
, 

Mathematica
3
) Mathcad was chosen because it is highly visual, relatively easy to learn, and is 

widely used in the structural engineering profession.    

By the end of the semester, quite complex problems may be solved with Mathcad, including 

any two-dimensional structure incorporating frame or truss elements.  Practically any type of 

loading may be considered; shear deformations, rigid ends, and member end-releases may be 

included; and a variety of constraints may be modeled.  Aside from Mathcad, no commercial 

structural analysis software is used in the course.   

 

THEORETICAL BASIS 

 

The theoretical material in the course is taught from the perspective of mathematical 

transformations.  These transformations are presented on the first day of class in the context of 

the basic equilibrium equations (1a), and an expanded version of the same equations (1b).   

 

 K FΔ =  (1a) 

                                                 
1 Product Development Company , Needham, MA. 
2 The MathWorks, Inc., Natick, MA. 
3 Wolfram Research, Champaign, IL. 
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In (1a), K is the system stiffness matrix, F is a vector of nodal loads, and Δ is a vector 

containing the displacements at the various degrees of freedom (DOF).  In the expanded form, 

the matrix product in the summation on the left hand side represents a progressive change of 

scope, starting with the most fundamental "reduced" element stiffness , and ending with the 

same element ready for assembly into the system's global stiffness matrix.  This expansion is 

facilitated by displacement transformations a, T, and A, and by corresponding force 

transformations b, U, and B.  Similarly, the matrix product in the summation on the right hand 

side expands the element fixed-end forces , enabling them to be added into the global force 

vector.  The limit nels in the summations of (1b) is the number of elements in the structure. 

k�

q̂

While (1b) is initially intimidating to most students, it may be easily explained through a 

description of the various transformations that are involved.  Each transformation relates two 

adjacent levels of scope.  For any element of any structure, there are only four levels of scope, as 

indicated in Table 1, and as illustrated in Figure 1.  Each level of scope consists of two parts; the 

chosen degree-of-freedom set, and the reference coordinate system.   

 

Level of Scope DOF Set Reference Coordinate 

System 

Diacritical Identifier 

1 (narrowest) Reduced Element Local Tilde (~) 

2 Full Element Local Carat (^) 

3 Full Element Global Overbar (-) 

4 (broadest) Structure Global none 

TABLE 1 -  Levels of Scope used in Analysis of Any Structure 

 

At Level 1, a reduced element DOF set is used.  The physical model for this level of scope is 

presented in Figure 1a for an element of a planar frame.  All variables referring to this element 

are presented with a tilde (~) diacritical mark.  The term “reduced” indicates that a partial set of 

element DOF are utilized.  The basic requirements in choosing the reduced DOF set are that the 

element be stable and statically determinate. For most elements there is some choice in the 

selection of the active DOF set in the reduced element [McGuire, et al., 2000]. 

The first step in the Level 1 analysis is to develop the flexibility matrix  of the element.   

Each column of  is found by applying a unit force at DOF j and computing the resulting 

displacements at each degree of freedom i.  Once the flexibility matrix is found, the principle 

of superposition is invoked to show that any displacement pattern can be represented as a linear 

combination of the displacements arising from the unit forces: 

d�

d�

,i jd�

 

  (2) d fδ = � ��
 

whereδ� is the nodal displacement vector resulting from applied nodal forces f� .  If the 

individual terms in are computed using virtual work, it is easy to show that  must be d� d�
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symmetric, because the only difference between  and ,i jd� ,j id�  is that the real and virtual loadings 

are switched when computing these terms. 
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FIGURE 1 -  Levels of Scope for 2-D Frame Element 

 

If both sides of (2) are premultiplied by the 
1

d
−

k=� �

f

, the equilibrium equations for the 

reduced element are formed: 

 kδ =� � �  (3) 

 

Before moving to the next level of scope, it is important to make a few points about the work 

done at Level 1: 

 

• Physically, the displacements δ�  in the element represent the deformations in the element.   

• The flexibility d will also be used for the formulation of element fixed end forces �

• Direct formulation of k  is possible by imposing unit displacements at the various DOF. 

In some cases, however, a statically indeterminate analysis is required.  This difficulty is 

avoided by forming  and inverting to form  (in which case the indeterminate nature of 

the problem is handled "automatically" through the inversion process). 

�

d� k�

 

© 2008 ASCE18th Analysis and Computation Specialty Conference

Copyright ASCE 2008 18th Analysis and Computation Specialty Conference
 Structures Congress 2008 

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 H

u
az

h
o
n
g
 U

n
iv

er
si

ty
 o

f 
S

ci
en

ce
 &

 T
ec

h
n
o
lo

g
y
 o

n
 0

5
/2

3
/1

3
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.

https://www.civilenghub.com/ASCE/168347514/Structures-Congress-2008-18th-Analysis-and-Computation-Specialty-Conference?src=spdf

