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ABSTRACT: Measurement of engineering performance is fundamental to empirical understanding, 
model development, and to the observational method. It is also expensive. Yet, how representative 
are field observations of the geotechnical conditions at work, and how informative are they of critical 
design assumptions? Interesting lessons for geotechnical practice are suggested from considering 
such issues, and from qualitative statistical reasoning about observing geotechnical performance on 
limited budgets. The discussion considers three interrelated topics: intuitive misperceptions about 
samples and sampling variations, the nature of uncertainty and randomness in modeling soil deposits, 
and simple lessons derived from statistical sampling theory. 

INTRODUCTION 

Monitoring field performance involves a great deal of sampling, and builds upon 
lessons learned in a number of other scientific and technical fields. In this regard, 
field monitoring differs little from other sampling activities, whether in testing 
pharmaceuticals, inspecting airplane engines, or conducting political polls. We make 
a limited number of observations and try to draw scientifically defensible conclu- 
sions from them. Clearly, the interpretation of field data requires a good deal of in- 
sight into geology and engineering mechanics, and also experience with construction 
practices. Still, intuition fails even the most sophisticated engineer or scientist faced 
with the vagaries of scattered experimental data, and too little time or too few re- 
sources with which to make more observations. 

For simplicity, the present discussion limits consideration about the purpose of 
field monitoring to two objectives: (i) assessing site conditions, and (ii) testing the 
validity of an analytical model. Clearly, field monitoring has other objectives, for 
example, in quality control, and in observational methods, but these are deferred to 
another occasion. The discussion also ignores legal issues, despite their importance 
to practice. 
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INTUITION AND THE INTERPRETATION OF DATA 

Surprisingly, even trained statisticians are easily led astray when using intuition 
to interpret sampling observations. Mere scientists and engineers, as a result, have 
little hope of accurately interpreting sample variations, errors, and biases simply 
based on inspection. Yet, that is usually the approach taken in practice. Interest- 
ingly--but maybe not surprisingly--the errors people make in intuitively interpret- 
ing data are remarkably similar from one person to another. 

Sample variation 

When measurements are made in the laboratory or field they exhibit scatter. 
These measurements might more generically be called, observations, to include 
things other than instrument readings. A set of observations is typically called a 
sample. If the sample comprises a large number of observations, the data scatter 
among the latter tends to exhibit regularity. That is, the scatter within a sample and 
from one sample to another tends to display regular patterns, and over the years stat- 
isticians have learned to categorize those patterns, and to use them to draw infer- 
ences about the population from which the sample comes, the parent population 
Patterns of scatter within an individual sample are interpreted against what is known 
of the probable scatter among samples to make estimates about the parent popula- 
tion. 

For convenience, the scatter within a sample or from one sample to another is de- 
scribed by a frequency distribution or histogram, and this in turn can be summarized 
by its low order statistical moments. The most useful of these are the first two mo- 
ments, the mean or arithmetic average of the observations, m, and the variance or 
mean-square variation about the mean, s 2. The standard deviation, s, is the root- 
mean-square variation (square-root of the variance), and the ratio of standard devia- 

tion to mean is the coefficient of variation, O=s/m. Such mathematical functions of 
the sample observations are said to be statistics of the data, or alternately, sample 
statistics, and form the basis for making inferences about the parent population. 

The law of large numbers, a fundamental principle of statistical theory, implies 
that, as the sample becomes larger, the statistical properties of the sample become 
ever more to resemble the population from which the sample is taken. 2 The opera- 
tive phrase here is, "as the sample becomes larger." For example, one is often inter- 
ested in the average value of some parameter or performance measure in the field, 
across all the elements of the population that may not have been observed in the 
sample. If the number of observations in a sample is large, it seems reasonable, and 
the law of large numbers confirms, that one might use the sample average of the set 

of observed values as indicative of the population average in the field. But, what 

2 The Law of Large Numbers is more specific and limited than this colloquial interpretation (Feller, 
1967), but the practical implication is quite broad. See, also, Maistrov (1974) for an historical sketch. 
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about the case where the sample is not large? This is almost always true in geotech- 
nical practice. 

The law of large numbers says that variations of the moments of a sample about 
their counterparts in the parent population become ever smaller as sample size in- 
creases, but for small samples these variations can be large. Presume we take many 
samples of size n from the same population, and for each sample we calculate the 
sample mean, m. The values of m across the many samples themselves exhibit scat- 
ter, and could be plotted as a histogram. This distribution of the sample mean, or of 
any other sample parameter, is called the sampling distribution. The sampling dis- 
tribution is the frequency distribution of some sample statistic over repeated sam- 
pling. The theoretical variance of the scatter among the means of each of many 
samples of size n is Var(m)=s2/n. Var(m) is the second moment of the sampling dis- 
tribution of m. Correspondingly, the standard deviation of the sample means is, 
Sm=S/(n) ~/2. 

The coefficient of variation of soil properties measured in the field can be as 
large as 100%, although values of 30-50% are more common (Kulhawy and Traut- 
mann, 1996; Phoon and Kulhawy, 1996). Thus, if ten (10) tests are made, the 
variation of their sample average about the (unknown) population (soil deposit) aver- 
age would have a standard deviation of 10-16%. Since, under very general assump- 
tions, the sampling distribution of the mean is well approximated by a Normal distri- 
bution, the range for which one would be comfortable bracketing the population 
mean is, say, 2 to 2.5 standard deviations, or in this case between +20-40~ of the 
best estimate) In other words, there is considerable uncertainty in the inference of 
even average soil properties, when reasonable sample sizes are taken into account. 
There is, of course, even more uncertainty about inferences of soil properties at spe- 
cific locations within a soil deposit. 

Representativeness 

Despite the fact that sampling variations can be large---and in geotechnical prac- 
tice, they are large---there is an intuitive tendency to treat sample results as represen- 
tative of--or similar to---the population from which they are taken. Most people be- 
lieve intuitively that samples should reflect the essential characteristics of the popu- 
lation out of which they arise, and thus the converse, that essential characteristics of 
the population should mimic those of the sample. People's intuition tells them that a 
sample should be similar to the population from which it comes, but that is only true 
in the limit, as sample sizes become large. This leads to errors. Speaking strictly, 
representativeness is a property of sampling plans, not of samples. A sampling plan 
is representative of the population being sampled if every element of the population 
has an equal chance of affecting the (weighted) properties of the sample (Cochran, 

3 The Normal limit to the sampling distribution follows from the Central Limit Theorem, which is 
closely related to the Law of Large Numbers, see, eg., Feller (1967) 
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1977), and from this one speaks of"representative sampling. ''4 A sample, in contrast 
can never be representative: it is a unique collection of particular elements within 
the population, and each such collection has different properties. 

Take, for example, the string of sample outcomes deriving from six tosses of a 
fair coin, {H,H,H,H,H,H}. Most people intuitively think of this string as less likely 
to occur than the string, {H,T,T,H,T,H}, even though each has the same probably, 
(1A)6. This is akin to the Gambler's Fallacy that if heads has not appeared in some 
time, it is overdue and should occur with increased probability. Intuition tells us that 
the sample should represent the population, that is, be similar to the population in sa- 
lient aspects, and in short runs as well as long. In this case, the sample should have 
about the same number of heads as tails, and the sequence of heads and tails should 
be "random," that is, erratic. That this is a misperception is obvious to anyone who 
thinks about it; yet, our intuition tells us otherwise. 

The same thing is true of samples of geotechnical observations. We presume 
them to be representative of the geotechnicai population out of which they arise. The 
averages within the sample ought to be about the same as the averages in situ. The 
variability of observations ought to be about the same as the variability in situ. Spa- 
tial patterns of variation among the observations ought to mirror spatial patterns in 
situ. All of these things are true in the limit, but for small samples they are compro- 
mised by sampling variability, and may be profoundly untrue. Small samples of the 
size typical in geotechnical practice seldom display the salient properties of the 
population; the variability among sample outcomes is simply too great. 

Overconfidence 

This intuitive belief in representativeness leads people to believe that important 
characteristics of a population should manifest in every sample, no matter the sample 
size. Yet, we know from statistical theory that this is not true: small samples exhibit 
large variation from one to another. This leads people to put too much faith in the 
results of small numbers of observations and to overestimate the replicability of such 
results. If tests are repeated, people have unreasonably high expectations that sig- 
nificant results will be replicated. Thus, the ten (10) observations of field perform- 
ance above are made, and one is surprised that the next set often yields a 30% dif- 
ference in average results. A person's typically response is not to ascribe this differ- 
ence to expectable statistical variation, but to seek a cause. The engineering litera- 
ture is filled with well-intentioned attempts to explain away differing sample results, 
when in fact, such explanations would be more in order had such differences not 
been observed. 

4 In some places the term, representative sampling, is used to mean that the probability of sampling 
sub-populations is set equal the relative frequency of those sub-populations within the overall popula- 
tion. This meaning is subsumed within the definition here. 
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A corollary to this belief in the representativeness of small samples is the over- 
confidence even scientifically trained people place in their inferences or estimates of 
unknown quantities. In a famous early study, Alpert and Raiffa (1982) demonstrated 
that when asked to place 25%:75% or 5%-95% confidence bounds on estimates of 
unknown quantities, the true values of the quantities being estimated fall outside the 
assessed bounds considerably more often that the nominal 50% or 10%, respectively. 
Often more than half the real values fall outside 5%-95% confidence bounds people 
estimate. This result has been replicated in another early study by Folayan et al 
(1970) involving engineers' estimates of the properties of San Francisco Bay Mud, 
and by Hynes and Vanmarcke (1976) involving predictions of embankment height at 
failure for the MIT 1-95 Test Embankment. Data from Folayan et al. are recalculated 
in Table 1 to show 95% confidence intervals on the subjective assessments of the 
mean compression ratio, and to show 95% confidence intervals derived from 42 tests 
at the site. The lack of overlap between the subjects' intervals and that calculated 
from sample observations suggests strong overconfidence on the part of the subjects. 

Subject 2.5% limit 97.5% limit 

1 0.29 0.31 

2 0.27 0.28 

3 0.26 0.29 
4 0.26 0.34 
5 0.20 0.43 

Sample 0.32 0.36 

Table 1. 95% confidence intervals on average compression ratio for San Francisco 
Bay Mud at a particular construction site, subjectively estimated by five engineers. 
Confidence interval also shown based on n=42 observations at the site (after, 
Folayan, et al., 1970). 

As reliability analysis becomes increasingly important to geotechnical practice, it 
is sometimes suggested that a field expedient way of assessing the standard deviation 
of an uncertain quantity is by eliciting the maximum and minimum bounds one could 
conceive the quantity having, and then assuming that this range spans a certain num- 
ber of standard deviations of variation, typically, q-3s. The reasoning is that for a 
Normal variate, +3 standard deviations spans 99.75% of the variation. But, if people 
are over confident of their estimates of uncertain quantities--which we know them 
to be---then people will frequently be surprised in practice to find their maximum 
and minimum bounds exceeded. Thus, the "six-sigma" rule is unconservative, and 
possibly quite significantly. This can also be seen in Figure 1, in which the expected 
range of sample values, rn=lXmax-Xmin], for a Normal variate is plotted as a function of 
sample size. Even for samples as large as n=20, the range expected in a sample is 
less than 4 standard deviations. The reciprocal of this expected range, in fact, makes 
a useful estimator of standard deviation, and one with known sampling properties 
(Snedecor and Cochran, 1980). 
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Figure 1. Expected range of Normal sample in standard deviation units 

"Law of small numbers" 

In a series of celebrated papers in the, 1970's, the late Amos Tversky and Daniel 
Kahneman, now of Princeton University, introduced the scientific world to the sys- 
tematic differences between the way people perceive probability and the way statisti- 
cal theory operates, and to the term representativeness as used above (1971, 1974, 
1979). That body of work, and the explosion of studies that followed, are sometimes 
referred to as the "heuristics and biases" school of thought on subjective probability 
(see, e.g., Morgan and Henrion, 1990). 

This body of work emphasizes that the use of representativeness (similarity) to 
judge probabilities is fraught with difficulty, because it is not affected by factors that 
should influence judgments of probability. Important among these are the over- 
confidence described above, a disregard for base rates (a priori probabilities), and 
ignorance of common regression effects. This concept that observers presume sam- 
ples to be representative of the population seems benign, but leads to serious errors 
of judgment in practice. Tversky and Kahneman (1971), dubbed this, "The Law of 
Small Numbers," which states simply, that the Law of Large Numbers applies to 
small numbers as well. 

This overlooking of sample size manifests even when a problem is stated so as to 
emphasize sample size, and in many different contexts. Consider, for example, a 
question that arose in a flood hazard damage reduction study. A river basin was ana- 
lyzed in two different ways to assess levee safety. In the first case, the river was di- 
vided into 10miles (6 km) long reaches; in the second, the river was divided into 1 
mile (0.6 km) long reaches. Would the average settlements within the levee reaches 
have greater variability in the first case, the second case, or about the same in each? 
Of an admittedly unscientific sample of 25 graduate students and engineers, 7 said 
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the first (more variation among long reaches), 6 said the second (more variation 
among short reaches), and 12 said the last (about equal). But clearly, the long 
reaches have the least variation among their average settlements, because they are 
larger samples. Smaller samples are more erratic. 

Prior probabilities 

A second manifestation of representativeness is that people tend to overlook 
background rates and focus instead on the likelihood of the observed data when 
drawing conclusions. To review for a moment, Bayes' Theorem says that the prob- 
ability one ascribes to an event or parameter estimate should be the product of two 
probabilities: the probability a priori to observing new data, and the likelihood 
(conditional probability) of the new data given the event or parameter value. This is 
summarized by the familiar expression, 

Vr{O l data) = Pr{O}L{data I | (1) 

in which | is an event or parameter (the state of nature), Pr{| is the probability of 

| prior to observing the data, Pr{| I data) is the probability after observing the data, 

and L{data I 0} is the conditional probability of the data given | (i.e., the Likeli- 

hood). This relationship led DeFinetti (1937) to say, "data never speak for them- 
selves," they tell us only how to modify what we thought before we saw them to 
what we should logically think afterward. What the data tell us is summarized in the 
likelihood function. What we thought before is summarized in the prior probabili- 

ties. 

Sometimes representativeness leads people to place undue importance on sample 
data (because they "should be similar to the population"), and in so doing ignore, or 
at least downplay, prior probabilities (the latter sometimes referred to as base-rates 
in the heuristics and biases literature). As a simple example, in risk analyses for dam 
safety a geologist might be asked to assess the probability that faults exist undetected 
in the bottom of a valley. Noting different rock formations on the adjoining valley 
walls, he or she might assign a high probability to faulting, because of the associa- 
tion of this condition with faulting, in spite of the fact, say, that the base-rate of fault- 
ing in the region is low. The two sources of evidence, prior probability and likeli- 
hood, should each influence the a posteriori probability (Eqn. 1), but intuition leads 
us to focus on the sample likelihood and, to some extent, ignore the prior probability. 

Regression to the mean 

Today, we think of regression analysis as fitting lines to data, but when Francis 
Galton did his pioneering work in the 1870's, and coined the term, his interest was 
not in best-fit lines but in reversion to the mean (Stigler, 1999). Galton experi- 
mented with the sizes of peas, and noted that, on average, size is inherited. Large 
peas tend to have larger than average offspring, and small peas the reverse. He noted 
also that, while on average the offspring of large peas are larger than their counter- 
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parts, they are also on average smaller than their parents. The offspring revert part of 
the way back to the population average. The fitting of lines came into the picture be- 
cause the average distance between the size of the offspring and the population aver- 
age was a linear function of the distance between the size of the parent and the popu- 
lation average (Figure 2). 

Figure 2. Regression line representing the expected values of y for given value of x. 
Note, because the regression line is less steep than the axis of the data ellipse, the 
conditional average of y for a given x is proportionately closer to the y-mean than 
the value of x is to the x-mean. 

This regression effect occurs all the time in everyday life, and is related to the er- 
ror people make in presuming representativeness. We look at the present or most re- 
cent sample or observation, and presume it is representative of the next; but, even 
eliminating sample size effects for the moment, this may not be the case. Consider 
that a numerical model with sophisticated constitutive equations is used to predict 
the performance of some earth structure. This model is applied to a randomly se- 
lected test section, and performs well. The predictions it makes of, say, deformations 
are closely matched by field measurements. Now, the model is applied to another 
test section. Will it perform as well? No, on average it will not, and one should not 
be surprised: it's basic regression. 

Model predictions are based on theory, simplifications, and statistical parameter 
estimates. There is necessarily variation in how well a model predicts from one test 
section to another. Yet, if the model has predictive validity, it will on average be 
correlated to actual performance, and the accuracies of prediction from one test sec- 
tion to another should be correlated as well. If two predictions are correlated, there 
exists a regression relationship between them. Invoking Galton's observation, one 
should expect the second prediction to be less good than the first more than half the 

time. Of course, the converse is also true. If the first model prediction was not so 
good, the second will on average be better. 
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THE "RANDOM SOIL PROFILE" 

In order to circumvent intuitive errors it has become more common to use formal 
statistical methods in analyzing field monitoring data, and indeed soil testing gener- 
ally. This is part of a larger trend toward the use of risk and reliability methods in 
geotechnical engineering, a trend heralded by the emergence of load-resistance factor 
design (LRFD) in geotechnical codes (Kulhawy and Phoon, 1996), the increasing use 
of risk analysis in dam safety (Von Tunn, 1996) and flood hazard damage reduction 
studies (USACE, 1996a, 1996b), and the appearance of prominent lectures on practi- 
cal applications of reliability. 

These new approaches have introduced concepts into geotechnical engineering 
that are relatively new to practice, and perhaps not fully appreciated by those trying 
to use them. First, what does it mean for soil properties at a particular site and within 
a particular soil profile to be "random?" Clearly, unlike the weather, soil properties 
do not fluctuate erratically with time. In principle, the properties of the soil ought to 
be knowable everywhere. The only reason they are not known everywhere, and with 
precision up to our ability to measure, is that limited resources or limited testing 
technology has precluded them being observed. 

Second, what does it mean for predictions of engineering performance to be "un- 

certain?" Uncertainty comes in many forms. Field measurements are scattered, so 
the ability to calibrate models to engineering performance is imprecise. Soil test data 
are biased, so estimates of soil engineering parameters that go into the models are in- 
accurate. The models used to predict performance are simplifications of reality, so 
forecasts are only approximations. Do all these different types of uncertainty affect 
predictions of engineering performance in the same way? 

Third, what does it mean for uncertainties to be related to one another, that is, 
correlated? Some parameters, c and ~p for example, are not actually separate physical 
properties but rather curve fitting numbers, and thus dependent on one another. 
Along a long reach of levee or long excavation, the variation of performance in space 
may have a systematic although uncertain pattern. Errors in estimating commonly 
shared parameters may mean that uncertainties in different types of engineering per- 
formance are implicitly related, even if mechanistically independent. Do these inter- 
dependencies significantly affect predictive uncertainty? 

The nature of randomness 

Random (adjective). Date." 1565. 1. a: lacking a definite plan, pur- 

pose, or pattern b: made, done, or chosen at random; 2. a: relating 
to, having, or being elements or events with definite probability of oc- 

currence, b: being or relating to a set or to an element of a set each of 
whose elements has equal probability of occurrence. [Merriam- 

Webster, 1999]. 
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We use terms like randomness, uncertainty, probability, and chance all the time 
in the course of professional practice, yet without devoting much thought to what 
they mean, or to the larger philosophical questions their use implies. Most engi- 
neers, at least those who deal with the macroscopic world, think of nature as deter- 
ministic. For any effect there is a cause, and a cause and its effect are mechanisti- 
cally linked. What then does it mean for something to be random? If the world is 
deterministic rather than random--at least at the scale of earth structures--what does 
it mean to speak of probabilities in relation to the world? Do probabilities describe 
some fundamental physical process, or do they have to do with limited information? 

When we describe something as random, we normally mean that it is inherently 
unpredictable except probabilistically. Flood frequencies, for example, have been 
treated as an inherently random aspect of nature for many decades. In flood hazard 
studies we describe flood discharges only in exceedance probabilities (return peri- 
ods). Thus, we treat flood discharges as if their magnitudes were generated by a ce- 
lestial pair of dice. The peak discharge in a specific period of time, such as this year, 
cannot be predicted. All that can be said is that in a long series of years like this one, 
some fraction of the years will experience peak discharges larger than some fixed 
value. 

Does this mean that rainfall and runoff are unpredictable processes of nature? 
No, not necessarily. Given advances in atmospheric science and hydrology, it is be- 
coming ever more common for weather models to be used in predicting rainfall, and 
thus runoff and flood heights. Such models have also been used to predict probable 
maximum floods for dam safety studies (Salmon, 1999). When flood discharges are 
predicted by mechanistic modeling, they cease to be treated as random processes. 
The uncertainties surrounding predictions of flood flows change from those associ- 
ated with random events to those associated with model and parameter errors. So, 
the assumption of randomness is only a convenience of modeling. 

Randomness at the macro scale is an assumption, not an inherent part of the 
physical world. In principle, one ought to be able to predict whether a tossed coin 
lands heads-up or heads-down, but in practice, it is more convenient to assume that 
coin tossing is a random process resulting in a consistent frequency of each possible 
outcome as the experiment is repeated a large number of times. Randomness is not a 
property of the world; it is an artifact of modeling 

The nature of uncertainty 

Uncertain (adjective). Date: 14th century. 1: Indefinite, indetermi- 
nate 2 : not certain to occur : Problematical 3: not reliable: Un- 
trustworthy 4 a : not known beyond doubt : Dubious b." not having 
certain knowledge: Doubtful c: not clearly identified or defined 5: 
not constant: Variable, Fitful [Merriam-Webster, 1999]. 
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