
period January 1990 to December 2000 (Khobragade 2009). The mean monthly Tmax 

in the catchment varies from 19°C to 39.5°C and mean annual Tmax is 30.6°C. The 

mean monthly Tmin ranges from 3.4°C to 29.8°C based on decadal (1990 2000) 

observed value. The observed mean monthly Tmax and Tmin have been shown in 

Figure 9.3 for various months of year 2000 respectively. The study area receives an 

average annual precipitation of 597 mm. It has a tropical monsoon climate where 

most of the precipitation is confined to a few months of the monsoon season. The 

south�west (summer) monsoon has warm winds blowing from the Indian Ocean 

causing copious amount of precipitation during June�September months.  The 

observed precipitation has been shown in Figure 9.4 for various months of year 2000. 

The Canadian Center for Climate Modeling and Analysis (CCCma) 

(http://www.cccma.bc.ec.gc.ca/) provides GCM data for a number of surface and 

atmospheric variables for the CGCM3 T47 version which has a horizontal resolution 

of roughly 3.75° latitude by 3.75° longitude and a vertical resolution of 31 levels. 

CGCM3 is the third version of the CCCma Coupled Global Climate Model which 

makes use of a significantly updated atmospheric component AGCM3 and uses the 

same ocean component as in CGCM2. The data comprise of present-day (20C3M) 

and future simulations forced by four emission scenarios, namely A1B, A2, B1 and 

COMMIT.  

 

 

Figure 9.4. Observed precipitation for the study region for year 2000 

 

The nine grid points surrounding the study region as shown in Figure 9.2 are 

selected as the spatial domain of the predictors to adequately cover the various 

circulation domains of the predictors considered in this study. The GCM data are re-

gridded to a common 2.5° using inverse square interpolation technique (Willmott et 

al. 1985). The utility of this interpolation algorithm was examined in previous 

downscaling studies. 
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9.4.1  Selection of Predictors 

 
The selection of appropriate predictors is one of the most important steps in a 

downscaling exercise for downscaling predictands. Predictors have to be selected 

based both on their relevance to the downscaled predictands and their ability to be 

accurately represented by the GCMs. The most favorable predictors must be strongly 

correlated with the predictand, be physically sensible, and have the ability to capture 

the climate change signal (Goyal et al. 2010). The predictors are chosen by the 

following criteria: (1) they should be skilful in representing large-scale variability 

that is simulated by the GCMs and are readily available from archives of GCM output 

and reanalysis data sets; (2) they should strongly correlated with the surface variables 

of interest/predictands, i.e., they should be statistically significant contributors to the 

variability in predictands; and (3) they should represent important physical processes 

in the context of the enhanced greenhouse effect (Ghosh and Mujumdar 2007; Goyal 

and Ojha 2012d). In this section, the selection of predictors for Pichola Lake basin 

has been carried out using (i) scatter plots and cross correlations and (ii) VIP scores 

obtained from PLS regression.  The details of these approaches are given below. 

  
9.4.1.1 Application of Scatter Plots and Cross Correlation 

 

Cross-correlations and scatter plots are in use to select predictors to 

understand the presence of nonlinearity/linearity trends in dependence structure. 

Cross-correlations and scatter plots between each of the predictor variables in NCEP 

and GCM datasets are useful to verify if the predictor variables are realistically 

simulated by the GCM. Cross-correlations are computed, and scatter plots are 

prepared between the predictor variables in NCEP and GCM datasets. The cross 

correlations are estimated using three measures of dependence, namely product 

moment correlation, Spearman�s rank correlation and Kendall�s tau. Spearman�s rank 

correlation ( ) is computed using the difference between the ranks of 

contemporaneous values of predictor and predictand (Di). 

 

Various authors have used large-scale atmospheric variables, viz., air 

temperature, geo-potential height, zonal (u) and meridional (v) wind velocities, as the 

predictors for downscaling GCM output to temperature, precipitation and evaporation 

over an area. For this study, we have used total 9 possible predictor variables, 

namely, air temperature (at 925,500hPa and 200hPa pressure levels), geo-potential 

height (at 200hPa and 500hPa pressure levels), zonal (u) and meridional (v) wind 

velocities (at 925 and 200hPa pressure levels), as the predictors for downscaling 

GCM output to mean monthly temperature, precipitation and pan evaporation over 

the lake basin. 

 

The cross-correlations enable verifying the reliability of the simulations of the 

predictor variables by the GCM, are shown in Tables 9.1, 9.2 and 9.3 for Tmax, Tmin 

and precipitation, respectively. In general, most of predictor variables are realistically 

simulated by the GCM where CC was greater than 0.65. It is noted that air 

temperature at 925hPa (Ta 925) is the most realistically simulated variable with a CC 
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greater than 0.8, while meridional wind at 200hPa (Va 200) is the least correlated 

variable between NCEP and GCM datasets (CC = -0.17). It is clear from Tables 9.1, 

9.2 and 9.3 that air temperature at 925hPa (Ta 925), air temperature at 500 hPa 

(Ta500), air temperature at 200 hPa (Ta200), meridional wind at 925hPa (Va 925), 

zonal wind at 925hPa (Ua925), geo-potential height at 200hPa (Zg200) and geo-

potential height at 500hPa (Zg500) are better correlated than meridional wind at 

200hPa (Va200) and zonal wind at 200hPa (Ua200). The cross-correlations are 

computed between the predictor variables in NCEP and GCM datasets (Table 9.4). 

  

Scatter plots are prepared between the predictor variables in NCEP and GCM 

datasets (Figures 9.5 and 9.6). It is to be noted that these figures represent how well 

the predictors simulated by NCEP and GCM are correlated. Generally, the 

correlations are not very high due to the differences in the simulations of GCM (e.g. 

for different runs) and possible errors in NCEP-reanalysis. In addition, the inherent 

errors due to re-gridding from GCM scale to NCEP scale also contribute to low 

correlation. 

 

9.4.1.2 VIP Scores by the PLS Regression 

 

The VIP (Variable Importance in the Projection) scores obtained by the PLS 

regression has been paid an increasing attention as an importance measure of each 

explanatory variable or predictor. The variable selection procedure under PLS is 

proposed with an application to downscaling technique for identifying influencing 

variables to understand the impact of climate change. The VIP scores which are 

obtained by PLS regression, can be used to select most influential variables or 

predictors, X. The VIP score can be estimated for j-th X-variable by  

 

2

1

1

( , )

( , )

k

j d i ijk
i

d i

i

p
VIP R Y t w

R Y t =

=

=                                                                    (Eq. 9.2) 

where Rd is defined as the mean of the squares of the correlation coefficients (R) 

between the variables and the component. 
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Rd X c R x c
p

=

=                                                                                 (Eq. 9.3) 
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Figure 9.5. Scatter plots prepared to investigate dependence structure between 

probable predictor variables in NCEP and GCM datasets 
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Usually the predictor variable whose VIP score is greater than 0.8 and above 

is considered as an important variable. It can be seen from Figures 9.7, 9.8 and 9.9 

that seven predictor variables namely air temperature at 925hPa, 500hPa and 200hPa; 

zonal wind (925hPa); meridional wind (925hPa); geo-potential height 500hPa and 

200hPa have their VIP scores greater than 0.8. Correlation matrices of predictors also 

yielded the similar results. It is noted that different predictors control different local 

variables, and mean temperature is most sensitive to surface and near surface 

atmospheric factors.  

 

Figure 9.7. VIP of the predictand variable (Tmax) of the two-component PLSR 

model 

 

9.4.2  Correcting Bias by a Multiplicative Shift 

Many GCMs either overestimate or underestimate maximum and minimum 

temperature as well as precipitation. The correction scheme brings the distributions 

close to the observed pattern. A simple multiplicative shift is used to correct the bias 

of the mean monthly GCM simulated variable as follows: 

' obs
i i

GCM

X
X X

X
=                                                                (Eq. 9.4) 

where '

iX , iX refers to raw and corrected GCM simulated variable, and GCMX  and

obsX  are long term mean monthly variable from the GCM and the observations for 

given month (Ines and Hansen, 2006)   
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9.5  Evaluation of Linear Regression Methods 
 

9.5.1  Model Development  

In this section, various linear regression approaches are used to downscale the 

mean monthly precipitation for the Pichola lake region. The data of potential 

predictors is first standardized. Standardization is widely used prior to statistical 

downscaling to reduce bias (if any) in the mean and the variance of GCM predictors 

with respect to that of NCEP-reanalysis data. Standardization is done for a baseline 

period of 1948 to 2000 because it is of sufficient duration to establish a reliable 

climatology, yet not too long, nor too contemporary to include a strong global change 

signal. The procedure typically involves subtraction of mean and division by standard 

deviation of the predictor variable for a predefined baseline period for both 

NCEP/NCAR and GCM output. A feature vector (standardized predictor) is formed 

for each month of the record using the data of standardized NCEP predictor variables. 

However, another way to implement the regression model is that principal 

components should be extracted first since multi-dimensionality of the predictors may 

lead to a computationally complicated and large sized model with high multi-

collinearity (high correlation between the explanatory variables/regressors). Then, the 

use of principal component (PCs) as input to a downscaling model helps in making 

the model more stable and at the same time reduces its computational burden. Here, 

regression approaches with and without principal components have been used in this 

analysis. 

 

 

Figure 9.8. VIP of the predictand variable (Tmin) of the two-component PLSR 

model 
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Figure 9.9. VIP of the predictand variable (precipitation) of the three-component 

PLSR model 

 

To develop downscaling models using regression approaches (see Table 9.5), 

the feature vectors which are prepared from NCEP record are partitioned into a 

training set and a validation set. Feature vectors in the training set are used for 

calibrating the model, and those in the validation set are used for validation. In case 

of using PCA, it is observed that the four leading principal components (PCs) of the 

PCA method explained about 97% of the information content (or variability) of the 

original predictors. Hence, PCs are extracted to form feature vectors from the 

standardized data of potential predictors. The 11-year mean monthly observed 

precipitation data series were broken up into a calibration period and a validation 

period. The models were calibrated on the calibration period of 1990 to 1995 and 

validation involved the period of 1996 to 2000. Seven predictor variables, namely air 

temperature (925hPa, 500hPa and 200hPa); zonal wind (925hPa); meridional wind 

(925hPa); geo-potential height (500hPa and 200hPa) at 9 NCEP grid points with a 

dimensionality of 63, are used as the standardized data of potential predictors. These 

feature vectors are provided as input to the various regressions downscaling model.  

 

Table 9.5. Different regression models used for obtaining projections of precipitation  

Approach 
Stepwise  Forward Backward Direct 

Without 

PCs  

Without 

PCs  

Without 

PCs  

Without 

PCs  

Without 

PCs  

Without 

PCs  

Without 

PCs  

Without 

PCs  

Model M1 MP1 M2 MP2 M3 MP3 M4 MP4 
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9.5.2  Training and Validation Results 

 
Results of the different regression models (viz.M1 to M4 and MP1 to MP4) as 

discussed in Table 9.5 are tabulated in Table 9.6. For predictand precipitation, the 

coefficient of correlation (CC) was in the range of 0.60 0.95; RMSE was in the range 

of 27.71 58.33; N-S Index was in the range of 0.24 0.90 and MAE was in the range 

of 0.23 0.72 for regression based models for the training and validation set. It can be 

observed from Table 9.6 that the performance of direct regression models with and 

without principal components for mean monthly precipitation are clearly superior to 

that of forward-, backward- and stepwise-regression-based models in the training data 

set while the performance of stepwise- and forward-regression-based models for 

predictand are clearly superior to that of backward- and direct-regression-based 

models in the validation data set. Results of forward and stepwise regression are quite 

similar. However, models developed using principal components yielded slightly 

better results. It can be inferred that model MP4 using direct regression performed 

best for predictand precipitation. Now, multiplicative shift is used to correct the bias 

of GCM of model MP4. The corrected model MP4 performed better than uncorrected 

in terms of various performance meausres (CC, RMSE and N-S Index), as shown in 

Table 9.7. It can be inferred that the performance of direct regression models bias 

corrected (viz. MP4(corrected) performed well. 

 

Table 9.6. Various performance statistics of models using various regression 

approaches for precipitation 

 Model 
CC RMSE N-S Index 

Training Validation Training Validation Training Validation 

M1 0.90 0.79 39.37 45.80 0.81 0.53 

M2 0.95 0.60 27.77 58.33 0.90 0.24 

M3 0.94 0.65 32.03 55.14 0.87 0.32 

M4 0.91 0.79 39.33 45.80 0.81 0.53 

MP1 0.90 0.80 39.18 44.01 0.80 0.51 

MP2 0.94 0.61 27.71 55.34 0.91 0.25 

MP3 0.95 0.66 31.03 55.64 0.88 0.35 

MP4 0.93 0.81 38.65 44.04 0.82 0.57 

 

Table 9.7. Various performance statistics of model using bias correction for 

precipitation 

Model 
CC RMSE N-S Index 

Training Validation Training Validation Training Validation 

MP4 (corrected) 0.94 0.82 37.71 41.44 0.86 0.62 

 

A comparison of mean monthly observed precipitation with precipitation 

simulated using forward regression models MP4 (corrected) has been shown from 

Figure 9.10 for the calibration and validation period. Regression coefficients (Aij) for 

predictor (precipitation) corresponding to model M4 has been shown in Table 9.8 

where i ranges from 1 to 7 indicating Ta 925, Ua 925, Va 925, Ta 500, Ta 200, Zg 
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