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Given a collection of damaged networks (made up of a set of damaged 
nodal components and a set of damaged line components), we can 
subdivide each network into different recovery zones. We can then write 
the zonal-scale optimization problem as the minimization of a set of 
objective function(s) (e.g., resilience metrics or cost) obtained by 
considering different priorities of the recovery zones.

The zonal-scale optimization problem is subject to physical and logical 
scheduling constraints for the recovery activities within each zone and 
service recovery constraints. Each set of these constrains entails a nested 
optimization. To schedule the recovery activities within each zone, we 
formulate a local-scale optimization problem whose objective is to 
minimize the recovery duration within the zone, while complying with 
physical and logical constraints to implement the recovery schedule. The 
objective of the service recovery optimization is to minimize a measure of 
discrepancy between the loss function estimates of the demand and supply 
measures through the recovery, while complying with the network-speci�c 
constraints, such as power balance equations for the power �ow network 
(Glover et al. 2012). Further details about the recovery optimization can be 
found in Sharma et al. (2019b).

3.7.4.5 Resilience-Informed Infrastructure Recovery Example. The 
de�nition of an optimal recovery strategy is illustrated by modeling the 
performance of the electric power infrastructure in Shelby County, 
Tennessee. Shelby County has an approximately 1,000,000 population, and 
the region is subject to seismic hazards originating from New Madrid 
Seismic Zone (NMSZ). In this example, we consider a historical scenario 
earthquake with a moment magnitude of 7.7 and the epicenter at 35.93°N 
and 89.92°W. We model the spatial variation of the earthquake intensity 
measures by using a three-dimensional physics-based model to capture 
near-�eld effects [Guidotti, R., S. Tian, and P. Gardoni, “Simulation of 
seismic wave propagation in the Metro Memphis Statistical Area (MMSA),” 
in preparation] and ground motion prediction equations for far-�eld 
regions (Steelman et al. 2007).

The electrical power infrastructure in Shelby County is managed by the 
Memphis Light, Gas, and Water (MLGW) Division. The balancing authority 
of the region is the Tennessee Valley Authority (TVA) who also owns and 
operates the generators and transmission lines providing power to MLGW. 
The model for the power �ow analysis is provided by Sharma et al. (2019a), 
building on the information provided in Shinozuka et  al. (1998) and 
Birch�eld et al. (2017). Figure 3-21 shows the topology of the developed 
model for Shelby County (b) and Tennessee (a).

To model the physical recovery, we estimate the damage to the 
vulnerable components and develop a detailed recovery schedule for the 
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repair or replacement of damaged components. Transformers, circuit 
breakers, and disconnect switches are vulnerable components to seismic 
excitations, which are all located in electric power substations. To develop 
the recovery schedule, we consider each substation and the corresponding 
service area as a single recovery zone. Given that two different agencies 
manage the electric power infrastructure inside and outside Shelby County, 
we de�ne four different recovery projects as follows: (1) MLGW critical 
repairs, for nonfunctional substations in Shelby County; (2) MLGW 
noncritical repairs, for functional but damaged substations in Shelby 
County; (3) TVA critical repairs, for nonfunctional substations in Tennessee; 
and (4) TVA noncritical repairs, for functional but damaged substations in 
Tennessee. Further details of the recovery schedule can be found in Sharma 
et al. (2019a).

To model service recovery, we develop a structural network, G[1], and a 
power �ow network, G[2]. The structural capacity and demand measures 
are in terms of the hazard intensity measure, whereas the �ow capacity 
and demand measures are in terms of the apparent power. The capacity of 
the �ow network is dependent on the structural network. We account for 
this dependency in the modi�ed �ow capacity estimates and accordingly 
obtain the modi�ed �ow supply estimates by running power �ow analyses. 
To summarize the overall service recovery, we de�ne the aggregate 

performance measure ′ ( )= ∑ ′ ( )[ ]
=

[ ]Q w Qnagg
cell cell cell

cellτ τ1
2

, where cell is the 
service area of each substation; wcell is a weight for the recovery cell that is 

Figure 3-21. Electric power infrastructure in (a) Tennessee, and (b) Shelby 
County.
Source: Adapted from Sharma et al. (2019a).
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proportional to the power demand in the recovery cell; and ′ ( )[ ]Qcell
2
τ  is the 

fraction of the power demand that is supplied in the recovery cell.
The scenario earthquake is estimated to cause damage to components in 

17 of the 36 zones managed by MLGW, which require critical repairs. In this 
example, we use ρQ as the sole objective function in recovery optimization. 
To solve the optimization problem, we use a genetic algorithm (Goldberg 
1989), whereas other algorithms could be used as well. Figure 3-22 shows 
the results for the service recovery in terms of ′ ( )[ ]Qcell

2
τ , which is a binary-

value quantity (dark gray is nonfunctional, and light gray is functional). 
Figure 3-22(a) shows the results according to the current recovery practice 
as de�ned in MLGW (2017), and Figure 3-22(b) shows the results according 
to the optimized recovery schedule. In Figure 3-22(a), we observe that 
′ ( )[ ]Qcell

2
τ  for some recovery cells �uctuates over time. This is because as the 

recovery advances, redistribution of loads on operating buses can result in 
voltage collapse. The optimized recovery results in ρQ = 18.1 h, compared 
with ρQ = 26.5 h for the current recovery practice (i.e., a 30.2% improvement). 
We can also observe that the improvement in ′ ( )[ ]Qcell

2
τ  is not uniform across 

the region because some areas experience slower recovery than the others. 
This is because the focus of ρQ, as the recovery objective, is on the recovery 
duration, thus not capturing the temporal and spatial variabilities in the 
recovery. Instead, one can use the formulation in Section 3.9.4 to de�ne a 
multiobjective optimization problem that captures all desired resilience 
objectives in developing the recovery schedule.

Figure 3-22. Predicted performance of the electric power infrastructure under (a) 
current recovery practice, and (b) optimized recovery schedule.
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