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Figure 4. Temporal relationships of horizontal deformation as a function of temperature 

for geosynthetic clay liner shear tests conducted at (a) σni = 20 kPa and (b) σni = 60 kPa. 

 

Relationships between total σn (i.e., reaction force + σni) versus horizontal deformation 

are shown in Fig. 5a and 5b for experiments conducted at σni = 20 kPa and σni = 60 kPa, 

respectively. All data in Fig. 5 show an increase in total σn during initial horizontal deformation 

when shear stress was incrementally increased. Tensile stress within the needle-punched fibers 

increased with shear deformation, which generated a moment within the GCL and increased the 

reaction force. An increase in temperature reduced tensile strength of the reinforcement fibers, 

and this reduced tensile strength was believed to contribute to the decrease in reaction force and 

total normal stress for a given σni (e.g., Fig. 5a). An increase in σni also affects the reaction stress, 

and tests performed under σni = 60 kPa experienced a smaller reaction force for a given 

temperature relative to tests conducted at σni = 20 kPa. In all constant-stress tests, the reaction 

force reduced when reaching failure, which suggests that the developed reaction force and 

specimen rotation were related to tensile stress developed within the reinforcement fibers. 

Relationships of net vertical displacement versus horizontal deformation are shown in 

Fig. 6a and 6b for experiments conducted at σni = 40 kPa and σni = 60 kPa, respectively. The net 

vertical deformation of a specimen was controlled by the reaction force placed at the back of the 

top shear platen (Fig. 1) and the ability for a specimen to rotate during shear. Thus, the tendency 

for specimens to compress or dilate during shear was based on σni and test temperature. In 

experiments on T20-20 (Fig. 2c) and T20-40 (Fig. 6a), specimens exhibited dilative behavior at 

failure due to low σni and temperature that allowed specimen rotation. In all other experiments, a 

higher applied σni or higher temperature limited rotation within the GCL and net compression 

was observed both during the test and at failure. Temperature affected net compression via 

decreasing tensile strength of the reinforcement fibers, which reduced the tendency for rotation. 

Geotechnical Frontiers 2017 GSP 280 294

© ASCE

https://www.civilenghub.com/ASCE/173249793/Geotechnical-Frontiers-2017-Geotechnical-Materials-Modeling-and-Testing?src=spdf


   

20

30

40

50

60

70

80

0 10 20 30 40 50

T20-20

T60-20

T80-20

N
o
rm

a
l 
S

tr
e

s
s
 (

k
P

a
)

Horizontal Deformation (mm)

σ
ni

 = 20 kPa (a)

   

0 10 20 30 40 50

T20-60

T60-60

T80-60

Horizontal Deformation (mm)

(b)

σ
ni

 = 60 kPa

                    

 

Figure 5. Relationships between total normal stress (initial dead weight + reaction) versus 

horizontal displacement for experiments conducted at(a) σni = 20 kPa and (b) σni = 60 kPa. 
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Figure 6. Relationships between net vertical deformation and horizontal deformation for 

experiments conducted at (a) σni = 40 kPa and (b) σni = 60 kPa 

 

A compilation of shear-to-normal stress ratio at failure versus test temperature for all 

experiments conducted in this study is shown in Fig. 7.  A general decreasing trend of shear-to-

normal stress ratio at failure can be observed for all σni with increasing temperature. This trend 

was attributed to reduced tensile strength of the needle-punched reinforcement fibers with 

increasing  temperature, which decreased internal shear strength of the GCL. 
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CONCLUSIONS 

 

Stress-controlled direct shear tests were performed on a needle-punched reinforced 

geosynthetic clay liner (GCL) at varying temperatures under three different applied normal 

stresses. Shear tests was performed in a state-of-the-art direct shear apparatus that allowed 

various combinations of shear and normal stresses to be applied to the GCL specimens while 

maintaining constant temperature. The following conclusions were drawn from the study. 

• Shear deformation behavior of GCLs is dependent on the initial normal stress (σni), 

whereby an increase in σni yielded smaller horizontal deformation for a given applied 

shear stress due to higher internal shear strength. 

• A reaction load measured at the back of the normal load plate was attributed to internal 

rotation of the GCL during shear via tensile stress within the reinforcement fibers. An 

increase in σni reduced the reaction load via suppressing specimen rotation, and an 

increase in temperature reduced the reaction load via reducing tensile strength of the 

reinforcement fibers. 

• Net vertical deformation of the GCL specimens was controlled by the amount of 

specimen rotation and corresponding change in total normal stress, both of which were 

affected by test temperature and σni. An overall net compression during shear was 

measured for all specimens except for specimens tested under low normal stress and low 

temperature, which dilated slightly when approaching shear failure. 

• An increase in test temperature led to increased horizontal deformation of GCLs via 

reducing tensile strength of the reinforcement fibers. Specimens tested at elevated 

temperatures reached failure at lower shear stresses, which yielded a decreasing trend 

between shear-to-normal stress ratio at failure and test temperature. 
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Figure 7. Compilation of shear-to-normal stress ratio at failure versus test temperature for 

all shear tests on geosynthetic clay liners conducted for this study. 
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Abstract 

 

Geosynthetics have been extensively used to reinforce soil structures, such as embankments, 

slopes, walls, foundations and roads. Proper evaluation of the interaction between geosynthetic 

reinforcement and backfill is important to understand the mechanisms of geosynthetic-reinforced 

soil (GRS) structures. Pullout tests have proven to be an effective way to study such interaction. 

In a pullout test, a geosynthetic reinforcement layer is buried in backfill within a test box. 

Vertical pressure is applied on top of the backfill to simulate the normal stress on top of the 

geosynthetic reinforcement in a GRS structure. The geosynthetic reinforcement is then pulled out 

from the backfill through an opening in the front wall of the box. The pullout test results are 

influenced by boundary conditions due to the thickness of the backfill, as well as the roughness 

of the interface between the backfill and the walls of the pullout box. This paper discusses the 

results of a numerical study performed to investigate the boundary effect on pullout test results. 

A two-dimensional numerical simulation was conducted using a finite differential method 

program, FLAC, using the Mohr-Coulomb model to describe the behavior of the backfill. The 

geosynthetic reinforcement was modeled as a linearly elastic and perfectly plastic material. The 

numerical model was calibrated and verified against pullout tests of geogrids. Boundary 

conditions, such as backfill thickness, and the roughness between the bottom of the backfill and 

the wall of the pullout box, and how these affect pullout test results are analyzed and discussed. 

The numerical results show that the pullout forces at the large pullout displacement calculated 

from the numerical simulation with the fixed bottom were closer to the measured pullout forces 

than those with the free bottom. 

 

INTRODUCTION 

 

Geosynthetics have been extensively used to reinforce soil structures such as embankments, 

slopes, walls, foundations and roads. The behavior of the interaction between geosynthetic 

reinforcement and backfill is important to understand the mechanisms of geosynthetic-reinforced 

soil (GRS) structures. Pullout tests have been reported to provide an effective way to study the 

interaction between geosynthetic reinforcement and backfill (e.g., Palmeira and Milligan 1989, 

Sugimoto et al. 2001, Moraci and Recalcati 2006, Abdi and Zandieh 2014, Wang et al. 2016). 

Although the pullout boxes used in these studies have generally met the boundary requirements 
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The backfill was modeled as a linearly elastic and perfectly plastic material with the 

Mohr-Coulomb failure criterion. This soil constitutive model has already been successfully 

employed to simulate the behavior of backfill in pullout tests (e.g., Abdi and Zandieh 2014). The 

parameters for the backfill used in the numerical simulation are summarized in Table 1. Figure 2 

shows the comparison between measured and numerically calculated results of the triaxial tests. 

As seen in Figure 2, results from the numerical simulation using the MC model showed a 

reasonable agreement with those from the triaxial tests. It should be pointed out that the friction 

angle in the plane strain condition was used in the numerical simulation of pullout tests since the 

numerical simulation involves a plane strain condition. The following correlation recommended 

by Kulhawy and Mayne (1990) for cohesionless soils was used to convert the friction angle from 

triaxial compression tests to the friction angle in the plane strain condition: 
°=°×== 524712.112.1

tcs
φφ , where 

s
φ = the friction angle in the plane strain condition and 

tc
φ

= the friction angle from triaxial compression tests.  

 

Table 1. Parameters for backfill 

Material 
Constitutive 

model 

Unit weight 

(kN/m3) 

Young's 

modulus (MPa) 

Poisson's 

ratio 

Cohesion 

(kPa) 

Friction 

angle (°) 

Dilation 

angle (°) 

Backfill Mohr-Coulomb 17.2 20 0.2 0 52 8 

 

The numerical simulation involved applying a load to the front of the geogrid to simulate 

the pullout force during testing. The geogrid layer was modeled as a linearly elastic and perfectly 

plastic strip element. The properties of the geogrid are summarized in Table 2. The interface 

properties between the geogrid layer and the backfill were incorporated in the strip element. 

Table 2 also provides the interface properties between the geogrid layer and the backfill. Among 

these properties is the interface cohesion, which was assumed to be zero because the backfill was 

an angular granular material. An interface friction angle of 40° was used, which results from 

using the equation tan φφ tanint ⋅=′
r

c , where 0.67=
r

c = reduction factor, and °= 52φ = friction 

angle of the backfill in a plane strain condition. The shear stiffness between the geogrid and the 

aggregate was calibrated by matching the curve from the numerical simulation with that from the 

pullout test under a normal pressure of 43.4 kPa, as shown in Figure 3.  The numerical model 

was also verified by comparing the results calculated from the numerical simulation with those 

measured by the pullout tests at two other confining stresses.     

 

NUMERICAL RESULTS 

 

Figure 3 shows a comparison between the experimental results from the pullout tests and the 

numerical calculations. The numerical calculations showed good agreement with those measured 

from the pullout tests. Both the measured and calculated results show that the pullout force 

increases when the geogrid layer is pulled out, but the rate of this increase gradually decreases. 

Eventually, the pullout force becomes constant, indicating that the geogrid-backfill interface has 

yielded. In addition, an increase in the confining stress results in an increase in the pullout force. 

Overall, the curves between the pullout force and the displacement of the geogrid layer showed a 

hyperbolic trend.  
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(a) 

 
(b) 

Figure 2. Comparison between measured and numerically calculated triaxial test results: (a) 

stress-strain relationship; (b) volumetric strain-axial strain relationship 

 

Table 2. Parameters for geogrid and geogrid-backfill interface 

Parameters unit Values 

Secant stiffness, J kN/m 820 

Yield strength kN/m 144 

Tensile failure strain % 20 

Interface cohesion, cinter kN/m 0 

Friction angle of interface, ϕ ° 40 

Shear stiffness, ks kN/m/m 6500 
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