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rehabilitation may increase abruptly almost simultaneously. 
2. Damage in steel structures are predominantly found in high-tension bolts, 

bearings and expansion joints. Corrosion and fatigue cracking also constitute 
importance damage mechanisms. On the other hand, damage in concrete 
structures mainly involves cracks, corroded bars, water leakage or spalling of 
cover concrete. The relevant design codes have been revised to reflect new 
technological advances from recent research, which has significantly contributed 
to the decrease in damage in newly constructed bridges. 

3. In this paper, a set of real expenditure data on maintenance and rehabilitation tbr a 
certain route of the Hanshin Expressway was used in a macro study of lifecycle 
costs. Reasonable estimate of the expenditure curve can be obtained using a 
least-squares or logarithmic fitting method. The study demonstrates that lifecycle 
cost depends significantly on the lifecycle selected, and the long lifecycle does 
not necessarily render the minimum lifecycle cost. It should be noted that 
defining the target time in service is very important. 
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DEVELOPMENT OF CONCRETE BRIDGE RATING 
EXPERT SYSTEM (BREX) IN JAPAN 

Kei Kawamura 1, Hideaki Nakamura 2 and Ayaho Miyamoto 3 

ABSTRACT 

The aim of the present study is to develop a concrete bridge rating expert system 
for deteriorated concrete bridges, constructed from a hierarchical neural network in 
order to carry out fuzzy inference and machine learning. The proposed system 
evaluates the performance of concrete bridges on the basis of a simple visual 
inspection and technical specifications. The neural network applied in this study 
facilitates refinement of the knowledge base by use of the Back-Propagation 
method, and prevents the inference mechanism of the system from becoming a 
black box. In this study, the training set for machine learning is obtained from 
inspection of actual in-service bridges and questionnaire surveys of bridge experts. 
Furthermore, comparisons between the diagnostic results of bridge experts and 
those of the proposed system are presented so as to demonstrate the validity of the 
system's learning capability. 

INTRODUCTION 

The authors have for some time been developing an expert system which can be 
used to evaluate the performance of existing concrete bridges on the basis of 
knowledge and experience acquired from domain experts [I-4,6,7]. The proposed 
expert system is called the concrete Bridge Rating EXpert system (BREX). The 
objective of the present system is to evaluate the present performance of target 
bridge members in terms of factors such as serviceability, load-carrying capability, 

...................... 

Dr. of Eng., Research Associate, Yamaguehi University, Dept. of Computer & 
Systems Engineering, Faculty of Engineering, Tokiwadai 2-16-1, Ube, Yamaguchi, 
755-8611, Japan, emafl; kei(ddesi_gn.csse.vamaguchi-u.ac.jp 
2 Dr. of Eng., Associate Professor, Yamaguehi University, Department of Computer & 
Systems Engineering, Faculty of Engineering 
3 Dr. of Eng., Professor, Yamaguehi University, Department of Computer & Systems 
Engineering, Faculty of Engineering 

161 

https://www.civilenghub.com/ASCE/173665794/Life-Cycle-Cost-Analysis-and-Design-of-Civil-Infrastructure-Systems?src=spdf


162 LIFE-CYCLE COST ANALYSIS AND DESIGN OF CIVIL INFRASTRUCTURE 

and durability. The input data for rating a concrete bridge are the technical 
specifications of the target bridge, environmental conditions, traffic volume, and 
other subjective information that can be obtained through simple visual inspection. 
In the present study, load-carrying capability and durability are used to estimate 
serviceability. Load-carrying capability is defined as the aspect of bridge 
performance that is based on the load-carrying capacity of a bridge member, and 
durability is defined as the ability of a bridge member to resist material 
deterioration and is based on the rate of material deterioration of the member. 
These two aspects of bridge performance are applied as indices for considering the 
necessity of performing maintenance on deteriorated bridges. Specifically, load- 
carrying capability is applied as an index for estimating the necessity of 
strengthening, and durability is applied as an index for estimating the necessity of 
repair. 

In the expert system, the performance of a target bridge is evaluated 
according to a diagnostic process, which is modeled on the inference process 
domain experts employ for rating an existing concrete bridge. This process is 
expressed by a hierarchical structure and has twelve main judgment items. The 
ultimate goal of this process is "serviceability." The hierarchical structure expresses 
the relationship between judgment items and input data, such as inspection data and 
technical specification data, or between judgment items. In practice, these 
relationships are expressed by "If-then" rules with fuzzy variables. Consequently, 
the fuzzy inference of the expert system is drawn from these rules. Naturally, these 
rules could be written directly into a computer in a computer language. In this 
study, however, these rules are implemented in a computer after a set of the rules 
relating judgment items and input data or relating judgment items is transformed to 
a hierarchical neural network. In other words, hierarchical neural networks identify 
a diagnostic process. The system can easily refine the knowledge base; that is, "If- 
then" rules with fuzzy variables, by use of a machine learning method. More 
specifically, the system refines the knowledge base by applying the Back- 
Propagation method [9]. Therefore, since the network is capable of performing 
fuzzy inference and machine learning, the system can be called a Neuro-Fuzzy 
expert system. Generally, although a neural network is a powerful machine learning 
tool, the inference process of a neural network becomes a "black box," which 
renders the representation of knowledge in the form of rules impossible. However, 
the hierarchical neural network proposed in the present study contributes to prevent 
an inference process from becoming a black box. As described later, the 
effectiveness of the hierarchical neural network and machine learning method was 
verified by comparison of the diagnostic results of bridge experts and those of the 
proposed system. 

PERFORMANCE EVALUATION OF EXISTING CONCRETE BRIDGES 

In the expert system, the target bridge is diagnosed according to a diagnostic 
process, which is modeled on the inference mechanism used by domain experts for 
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rating bridges (See Fig. 1). In a previous study, the authors used the Fuzzy 
Structural Modeling (FSM) method [10] to create the diagnostic process for main 
girders and slabs. Each process employs twelve main judgment items. These 
judgment items are evaluated by about 90 input data items, such as technical 
specifications, traffic volume, and results of visual inspection. The process is a 
hierarchical structure in which the ultimate goal is "serviceability." 

For instance, Fig. 1 shows the diagnostic process for main girders. The 
lowest-rated judgment items, such as "Condition state of cracking" and "Condition 
state other than cracking," are first evaluated by use of input data such as visual 
inspection data and technical specifications. The "Condition state of cracking" is 
evaluated from inspection data such as [Crack conditions] and [Maximum crack 
width (mm)]. Next, the higher-rated judgment items, such as "flexural cracks," 
"shear cracks," and "material deterioration," are diagnosed from the results of 
lower judgment items and/or input data. The damage degree of "flexural cracks" is 
determined from the results of "Condition state of cracking" and "Condition state 
other than cracking." Then, the higher-rated judgment items, such as "whole 
damage," "execution of work," and "service conditions," are also evaluated from 
the results of lower judgment items and/or input data. The final judgment item is 
"serviceability," which is evaluated according to the results of "load-carrying 
capability" and "durability." Each of these judgment items is assigned a soundness 
score, on a scale of 0-100, which is output from the expert system. The output 
score is categorized into one of five groups: 0-12.5, 12.6-37.5, 37.6-62.5, 62.6-87.5 
and 87.6-100. These groups are classified as "dangerous," "slightly dangerous," 
"moderate," "fairly safe," and "safe," respectively. In the present study, "safe" 
indicates that the bridge has no problems; "fairly safe" indicates no serious damage; 
"moderate" indicates the presence of some damage that requires continuous 
inspection; "slightly dangerous" indicates that the bridge should be repaired and/or 
strengthened; and "dangerous" indicates that the bridge should be removed from 
service and requires rebuilding. In the expert system, the relationships between 
judgment items and input data and those between judgment items are expressed by 
"If-then" rules with fuzzy variables. In addition, by introduction of machine 
learning into the expert system, these rules are implemented by hierarchical neural 
networks. A hierarchical network expresses a set of rules for evaluating a judgment 

item. 

FUZZY INFERENCE OF BREX 

Knowledge Representation 

The expert system evaluates the performance of a target bridge according to the 
diagnostic process, which expresses the relationships between judgment items and 
input data or between judgment items, as shown in Fig. 1. In the knowledge base of 
the system, the diagnostic process is stored in the form of "If-then" rules with fuzzy 
variables. Consequently, these rules enable the system to perform fuzzy inference. 
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The knowledge representation of the system is as follows. 

R;:/f x I is A I and...and x m is A m then y is B; (1) 

where, R;: ith fuzzy rule 

xl,...,x m : input items (input data such as technical specifications and 

results of visual inspection) 
y : output item (diagnosis item; that is, judgment item) 

A1,..., A~, : fuzzy variables 

B,: constant (soundness score on the scale of 0-100) 

For example, If ([Crack condition] is serious) and ([Maximum crack width] is 
huge) then ([Condition state of cracking] is 0.0). This rule is used in order to 
evaluate the judgment item "Condition state of cracking." 

Fuzzy inference process 

This section describes in detail the fuzzy inference process performed in the expert 
system. The portion of Fig. 1 enclosed in a dotted box; namely, the inference 
process that evaluates "Condition state of cracking," is explained as an instance. 
Table 1 shows the fuzzy rules for evaluating the judgment item "Condition state of 
cracking." For example, Rule No. 12 expresses the following fuzzy rule; If ([Crack 
conditions] is OK) and ([Maximum crack width] is OK) then ([Condition state of 
cracking] is 100.0). Since these rules employ some fuzzy expressions; namely, 
antecedents of the rules employ some fuzzy propositions, the initial form of 
membership functions for fuzzy rules must be prepared. Fig. 2 shows the 
membership functions related to the fuzzy rules for evaluating "Condition state of 
cracking." Table 2 shows an excerpt of the inspection sheet used for the system. 
The solid circles indicate inspection results. The inference process of "Condition 
state of cracking" diagnosis is described below, and is performed in 4 steps. 
[Step 1] Input of data 
Input data are entered into the computer. As shown in Fig. 1, the diagnosis of 
"Condition state of cracking" requires the input data [Crack conditions] and 
[Maximum crack width (mm)]. In the present study, these input data are acquired 
by simple visual inspection (See Table 2). Therefore, the values of GI-1 and G1-2 
in Table 2; that is, 0.7 and 0.5 (mm), are used as the input data for the diagnosis. 
[Step 2] Calculate the grade of membership functions used in antecedents 

(See Fig. 2 and Fig. 3) 
The rules of the expert system employ some fuzzy propositions in antecedents of 
"If-then" rules. In the present study, a fuzzy set is expressed by membership 
functions. Consequently, from the values of input data for evaluating a judgment 
item, the grades of membership functions used in antecedents are first calculated. 
In this example, since the inspection value of [Crack conditions] is 0.7, this value 
matches two membership functions, which express the fuzzy set for {not serious} 
and that for {serious}. Therefore, these grades of membership functions are 0.8 and 
0.4, respectively (See Fig. 2 (a)). However, the grade of membership function that 
expresses the fuzzy set for {OK} is 0.0, because the inspection value doesn't match 
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the membership function. Similarly, considering the inspection value of [Maximum 
crack width (mm)], which is 0.5, the value also matches two membership functions, 
which express the fuzzy set for {small} and that for {large}. Therefore, these 
grades of membership functions are both 0.8 (See Fig. 2 (b)). The other grades of 
membership functions are 0.0, because the value doesn't match the other fuzzy 
sets; namely, {OK} and {huge}. The left-hand section table in Fig. 3 indicates the 
fitness of each fuzzy proposition in antecedents to the inspection results; namely, 
[Crack conditions]=0.7 and [Maximum crack width (mm)]=0.5. 
[Step 31 Calculate the fitness of each rule to input values (See Fig. 3) 

Whereas Step 2 calculates the fitness of each fuzzy proposition in antecedents to 
input values, Step 3 calculates the fitness of each rule to input values. As shown in 
Fig. 3, the fitness of each rule employs the following equations from the grades of 
membership functions estimated in Step 2. 

~l i -- n j'li 

Y~*'k 
k=l 

where, 

(2) 

) 

~, : fitness of ith rule to input values, such as inspection results 

/~,,j (xj) :grade of a membership function 

i : identification number of fuzzy rule 

j : identification number of input variable and fuzzy variable 

xj : input variable 

/-6jj : fuzzy variable for input variable xj 

ij : identification number of fuzzy set on fuzzy variable /a6j 

n : the number of fuzzy rules 
Eq. (3) indicates that all fitness values of fuzzy propositions in the same fuzzy rule 
are multiplied; that is to say, all grades of membership functions in the same rule 
are multiplied. Therefore, when the inspection results [Crack conditions] =0.7 and 
[Maximum crack width (ram)]=0.5 are entered into the system, the values given in 
the right-hand section in Fig. 3 are estimated by Eq. (2) and Eq. (3). Rule No. 2 and 
Rule No. 3 both have a fitness of 17%, and Rule No.6 and Rule No.7 both have a 
fitness of 33%. 
[Step 4] Calculate a soundness score for a judgment item (See Fig. 4) 

In the final step, a soundness score for a judgment item is calculated from the 
fitness of rule acquired in Step 3 and soundness scores described in consequents of 
fuzzy rules. A soundness score for input values is estimated by the following 
equation. 

n 

Y = L ~kCOk (4) 
k=l 

where, ~k : fitness value ofkth rule, which is acquired by Eq. (2) 
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co k :soundness score described in consequents ofkth fuzzy rule 

Consequently, a judgment item is assigned a soundness score on a scale of 0-100. 
For example, when the input [Crack conditions] =0.7 and [Maximum crack width 
(mm)]=0.5 is entered, the expert system outputs the soundness score of 42.2 as the 
result of diagnosis of input data (See Fig. 4). 

FUZZY INFERENCE BASED ON NEURAL NETWORK 

Structure of fuzzy inference system using a hierarchical neural network 

In the expert system, the inference mechanism for evaluating a judgment item is 
constructed with a hierarchical neural network consisting of 5 layers, as shown in 
Fig. 5 [5,8]. The knowledge for diagnosing "Condition state of cracking"; that is to 
say, Table 1 and Fig. 2 (fuzzy rules and membership functions for fuzzy sets), are 
implemented in the computer by the neural network shown in Fig. 5. Therefore, the 
neural network can carry out the fuzzy inference mentioned in the previous section. 
In the present study, the layers of the network are referred to as layers (A), (B), (C), 
(D) and (E), respectively. These layers have neurons of three different types. The 
neurons in layers (A), (C) and (E) are linear neurons. The neurons in layer (B) are 
sigmoid neurons. The neurons in layer (D) are referred to as normalization neurons 
which employ Eq. (2). The Arabic numerals in the layer (D) neurons correspond to 
the number (No.) in Table 1. Therefore, clearly the connections from layer (C) to 
layer (E) express a fuzzy rule. A boxed value represents the initial connection 
weight between neurons or the initial threshold for a neuron. 

Next, is described the manner in which the initial values of weight and 
threshold are set. The layers (A)-(B)-(C) in the network identify the fuzzy sets in 
antecedents of fuzzy rules. If the membership function of a fuzzy set is an 
increasing function or a decreasing function, the form is identified by a sigmoid 
function; a sigmoid neuron is employed in layer (B) for an increasing function or a 
decreasing function. If the membership function is a convex function, the form is 
identified by the combination of two sigmoid functions; two sigmoid neurons are 
employed in layer (B) for a convex function. Then, the weights (co) between layer 
(A) neurons and layer (B) neurons, and the thresholds(a) of the (B) neurons are 
calculated according to the following equations. 

| Approximation of decreasing function 

a~=-h/ A 

O=hB/ A 

x I = B- A, ~u(x I) = 1.0, x I ~ X 

x 2 = B + A, ju(x 2) = 0.0, x 2 ~ X 

Xl,X 2 E X 

@ Approximation of increasing function 

(5) 
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"co = h~ A 

0 = -hB / A 

x 1 = B + A,/.t(x 1) = 1.0, xj ~ X (6) 

x 2 : B- A,/.t(x2) = 0.0,x 2 ~ X 

Xj,X 2 E X 

| Approximation of convex function 

o91 = h / A 

o9 2 =h/C 

01 = -h( B - A) / A 

0 2 = -h(B + C) / C 

X 1 = B,/z(x 1 ) = 1.0 (7) 

x 2 = B - 2A, ,t/(X 2 ) = 0.0 

X 3 = B + 2C,/~(x 3 ) = 0.0 

X1,X2,X3 EX, x 2 <X 3 

Note that h is a real number, which satisfies f(h)= 1.0. where, f(h): sigmoid 

function. In the present study, h = 3.5. In the case of approximation of an 
increasing function or a decreasing function, the weights between layer (B) neurons 
and layer (C) neurons are set to 1.0. In the case of approximation of a convex 
function, the weights between layer (B) neurons and layer (C) neurons are set to - 
1.0 for smaller threshold and 1.0 for larger threshold. In addition, initial weights 
between layer (C) neurons and layer (D) neurons are all 0.5. The initial weights 
between layer (D) neurons and layer (E) neurons are set according to Table 1. 
These weights express soundness scores described in consequents of fuzzy rules. 
Consequently, when input data are entered into the system, layers (A)-(B)-(C) 
perform the processing of [Step 1] and [Step 2] described earlier. Next, layers (C)- 
(D) perform the processing of [Step 3]. Finally, layers (D)-(E) perform the 
processing of [Step 4]. 

Modification of Fuzzy Rule by Machine Learning 

In the hierarchical network shown in Fig. 5, each weight and threshold is set for a 
specific purpose as mentioned above. Therefore, the network is capable of 
modifying fuzzy rules by altering these parameters, such as weight and threshold. 
Thus, applying the Back Propagation algorithm to the network as a machine 
learning method is easy, because the structure of neural network is hierarchical. 
More specifically, the elements modified by machine learning are the weights 
between layer (A) neurons and layer (B) neurons, the thresholds of layer (B) 
neurons, and the weights between layer (D) neurons and a layer (E) neuron. The 
weights of layers (A)-(B) and the thresholds of layer (B) neurons are used in order 
to express membership functions in antecedents of fuzzy rules. Consequently, 
weight alteration after learning indicates the slope alteration of the corresponding 
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membership function, and threshold alteration after learning indicates the axis 
movement of the membership function in the horizontal direction. In the learning 
of layers (D)-(E) weight, the proposition in consequents of fuzzy rules is changed. 
For instance, if the weight between a layer (D) neuron and a layer (E) neuron is 
changed from 0.0 to 1.0, the proposition described in consequents of fuzzy rule is 
changed from (]Condition state of cracking] is 0.0) to (]Condition state of cracking] 
is 1.0). 

VERIFICATION OF EFFECTIVENESS OF MACHINE LEARNING 

The proposed expert system is developed in Visual Basic and C programming 
languages and runs on a personal computer. In this section, the expert system is 
applied to seven existing bridges (nine spans), all of which are RC T-girder-type 
bridges, in order to test validity of the learning capability. These target bridges 
stand in Yamaguchi Prefecture. 

Questionnaire survey of domain experts and Visual inspection of bridges 

The purpose of the questionnaire survey of domain experts is to acquire teacher 
data necessary for learning, whereas, the purpose of visual inspection of bridges is 
to collect inspection data to be entered into the system. The domain experts also 
use the inspection results to fill out the questionnaires. The results of questionnaire 
survey and visual inspection were used as training data for carrying out machine 
learning. In the present study, for collecting training data, visual inspection of 
bridges and the questionnaire survey were conducted over 2 days. Seven domain 
experts from four construction consulting companies in and around Yamaguchi 
Prefecture participated in the survey. The survey covered nine spans of seven 
bridges. One set of survey forms, prepared for each span, consists of three different 
handouts; inspection record sheets (8 pages) to be used to record visual inspection 
results, a model drawing of each bridge on which the respondents write down 
whatever comes to mind during inspection, and questionnaire sheets (10 pages) to 
obtain teacher data required for machine learning. The inspection record sheets are 
formatted so that the respondents can choose a score from an 1 l-point rating scale 
ranging from 0.0 to 1.0 in increments of 0.1, answer multiple-choice questions, and 
enter numerical values (See Table 2). The questionnaire sheets are formatted so that 
the respondents can answer in the form of a score on a 0-100 scale in increments of 
5 points (See Fig. 6). 

Practical application and Verification of the expert system 

Table 3 summarizes the questionnaire results of main girder diagnosis by domain 
experts. The numerical values in parentheses represent averages of scores assigned 
by the four domain experts, out of the total of seven, who have more than 10 years' 
experience. The letters S, f-s, M, s-d, and D in the table represent safe, fairly safe, 
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moderate, slightly dangerous, and dangerous. These labels classify the average 
values in parentheses into five categories, the criteria used by the respondents for 
this categorization having been mentioned earlier. A number appearing after a 
bridge name indicates span number. Tables 4 and 5 present the diagnosis results of 
main girders before learning and after learning, respectively. As mentioned earlier, 
in the present study, the Back Propagation method was applied as a learning 
method. The resubstitution method was applied to the system as a training method. 
The training method uses all combinations of questionnaire survey and visual 
inspection; nine sets for nine spans, as training data for machine learning. 
Therefore, the data of a diagnosed bridge also include the training data. Evaluating 
the judgment items of a target bridge span on the basis of knowledge modified by 
the above training method is equivalent to evaluating the judgment items of an 
already-encountered span after completing learning sessions for a number of spans. 
The shaded areas in the tables indicate the following: gray shading indicates a 
system output value that deviates one order from the teacher value (See Table 3), 
and black shading indicates an output value that deviates two or more orders from 
the teacher value. The total error at the bottom of the table is a span-by-span sum of 
errors for each judgment item. Comparison of these outputs (Table 4 and Table 5) 
with the questionnaire survey results (Table 3) reveals that of the 108 judgment 
items (9 spans • 12 judgement items) for the main girders, 42 items before learning 
and 88 items after learning show agreement with the questionnaire results, 58 items 
before learning and 20 items after learning show deviation of one order from the 
teacher value, and 8 items before learning show deviation of two or more orders 
from the teacher value. Thus, the total agreement ratios before learning and after 
learning are 38.9 and 81.5 percent, respectively. Improvement of agreement ratio 
shows the validity of applying the machine leaming method to the system. 
However, since the reliability of the system depends on information on the 
distribution of bridge damage used for neural network learning, we must increase 
the number of sample bridge data sets used for learning and acquire data sets for 
various damage conditions. 

Next, modification of fuzzy rules is shown in order to verify the 
effectiveness of the applied neural network structure. Refinement of fuzzy rules for 
evaluating "Condition state of cracking" is presented as an example. Fig. 7 and Fig. 
8 show the membership functions used in antecedents of fuzzy rules before 
learning and after learning, respectively. The symbols in the figures indicate the 
following: |174 and | indicate the membership functions of fuzzy sets {OK}, 

{not serious}, and {serious} for input data ]Crack conditions] respectively, and I, 

lI, Ill, and IV indicate the membership functions of {OK}, {small}, {large}, and 
{huge} for input data [Maximum crack width (ram)]. respectively. Table 6 shows 
the weight modification between layer (D)-(E) neurons. No. in the table indicates 
rule number, which corresponds to Table 1. Comparing Fig. 7 and Fig. 8, we notice 

that after learning, the horizontal width of membership function I is reduced by 
2/3. The reduction indicates that the system after learning treats the input value of 
[Maximum crack width (ram)], which is smaller than that before learning, as the 
fuzzy set of {OK}. The other membership functions after learning are similar to 
those before learning. As a result of comparison of the weights before learning and 
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