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Figure 10. Distribution of ML estimates of I via the wavelet basis over all 67 CPT 

sites. 

Figure 11 shows a histogram of I estimates over the 67 sites using the periodogram 

maximum likelihood estimator discussed in Fenton (1999a). The average estimated/ 

value is now 1.9 ± 0.38 with an overall range from 1.04 to 2.70. The periodograrn esti­

mates agree very well with those obtained using the wavelet basis, and have somewhat 

superior precision . 
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Figure 11. Distribution of ML estimates of I obtained using the periodogram over 

all 67 sites. 
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In the following, the periodogram estimator will be used alone, the wavelet estimator 

being viewed primarily as corroborative evidence on the estimate of 7. 

The spectral exponent 7 may be equivalently expressed by the fractal dimension D 1 = 

(5 - 7)/2 or the Hurst coefficient of fractional Brownian motion, H = (7 - 1)/2. The 

latter coefficient can lead to some confusion, however, since the Hurst coefficient for 

fractional Gaussian motion, the derivative of the Brownian motion, which applies when 

0 7 < l,isH = (7+ 1)/2. 

The spectral intensity parameter G 0 was found to have an average value of 0.45 and a 

standard deviation of 0.42. This parameter is related to the process variance and both 

are considered to be site specific and also very affected by the type of data transfonn 

used. The result quoted here is for the In qc transformation. Over the 67 CPf data sites, 

the average process variance was estimated (by method of moments) to be 0.84 and a 

standard deviation of 0.93 and the mean of the In qc data was estimated to be 1.02 ±0.66. 

Armed with these parameters, which can be summarized as f.tx = 1.02, G0 = 0.45, 

and .Y = 1.9, one can presumably create a stochastic model for the X = lnqc process. 

Then letting qc = exp{ X} recovers the desired process. There are, however, a few 

more details to work out. Recall that the fractal process has infinite variance, and for 

7 2: 1 will behave as if non-stationary. A process with infinite variance is physically 

unrealii.able, and the apparent non-stationarity is inconvenient since it introduces an 

origin issue. The stochastic model must be modified in order to become physically 

realii.able and useful. For this purpose a lower frequency cutoff, w0 , is introduced. An 

appropriate spectral density function is of the form illustrated in figure 12. The lower 

frequency cutoff can logically be taken to be 271" / D, where D is the soil depth (Fenton, 

1999b). This suggestion is perhaps particularly appropriate if the spectral intensity · 

at the target site is unknown. However, if one or more CPf soundings are made at 

the target site and the spectral intensity estimated, then the cutoff frequency can be 

estimated by matching the area under the spectral density function shown in figure 12 

to the estimated process variance. 

According to theory, the variance can be obtained from the spectral density function 

according to 

100 ["G l 00 G ( 7 ) ui= G(w)dc.u= ....!!.duJ = G0 -1 - w!4 

o o Wo .,0 W7 -7 
(7) 

which can be inverted to solve for the required lower cutoff frequency in terms of the 

estimated variance and spectral parameters, 

(8) 
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Figure 12. Truncated spectral density function for fractal processes with 'Y > I. 

Because of the fractal nature of the data, the cutoff frequency should be selected for 

a particular sample length D. For example, the CPf sounding shown in Figure I has 

length D = 30.7 m and parameter estimates 7 = 2.23, G0 = 0.203, and O"i = l.335. 

For these values, the cutoff frequency, is given by Eq. (8) to be w0 = 0.351 rad/m. 

This corresponds to a cutoff frequency almost twice that suggested in the absence of 

knowledge of the spectral intensity. The frequency cutoff really controls how stationary 

realizations of the model appear. A smaller cutoff frequency leads to realizations with 

more pronounced apparent 'trends' over the soil depth, although the 'trends' in this case 

are actually random. Note that 'trends' of this sort were actually observed in the NOES 

data, as discussed in Section 2. 

A realization of the resulting random process, with truncated spectral density function 

(9) 

using the parameters found above for the CPf data of Figure l, is shown in Figure 

13. This realization was produced using the Fast Fourier Transform method (Fenton, 

1994). Aside from its increased high frequency content, it has very much the same 

statistical nature as seen in Figure 1. Note that it is not expected to be identical since it 

is merely one possible realization. It does, however, include the high-frequency content 

essential to the fine-scale self-similarity of a true fractal process. If such detail is not 

desired, it can be eliminated by placing an upper bound on the spectral density function 

of Eq. (9), logically related to the sampling interval, or by passing each realization 

through a low-pass filter. 
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Figure 13. Simulated lnqc record at the same site as in Figure 1 using 'Y = 1.9. 

Using the result that the scale of fluctuation is proportional to G(O) (Vanmarcke, 1983), 

an equivalent scale of fluctuation can be associated with the lower cutoff frequency 

applied to the fractal model, as follows 

Interestingly, the equivalent scale of fluctuation for the sounding shown in Figure 1 is 

computed to be (J* = 4.9 m, while its maximum likelihood estimate under the Gauss­

Markov model is 9 = 94.5 m, representing a theoretical long-range component implicit 

in this model. Over all 67 sites, the average scale estimated under the Gauss-Markov 

model was 51 m, with a very large standard deviation of 178 m. Note in the expression 

for (J* the inverse proportionality to w0 raised to the power/, indicating that modest 

changes in the estimated values for w0 or 'Y can yield dramatically different estimates 

for the scale of fluctuation. 

Once the cutoff frequency, G0 and/ are known, the model is fully specified, at least as 

far as the second moment is concerned. Unfortunately, no simple closed form expression 

for the covariance function corresponds to the truncated fractal spectral density function 

of Eq. (9), and so this quantity is most easily obtained by numerical integration using 

the Wiener-Khinchine relationship 

C(r) = fo00 

G(w)cos(wr)dw 

if it is desired. Because the integrand above contains the cosine function, it alternates 

in sign. Numerically, Eq. (11) is therefore prone to errors due to so-called catastrophic 
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cancellation (loss of accuracy in the difference between two large numbers). The same 
integral can be written 

I oo l"/2 
C(r)=-2: Ll0 (k,u)cosudu 

T ko-0 0 

(12) 

where, for 01;u = 2trk + u, 

Lla(k,u) = G ( 0
;) +G ( 0

"": l.Str)- G (°""
7
+7r)-G ( 0 A:u:0.5tr) (13) 

which, still involving differences, can at least be analytically approximated when the 
sum of the first two terms is very similar to the sum of the second two terms. The 
remaining integration in Eq. (12) can be performed, in the usual way, for example by 
using Gaussian quadrature. 

Summary 

The primary result of this paper lies in the inference, based on various ways to charac­
terize second-order properties of random functions, that the vertical variation of CPT qc 
data at the NGF.S sites appears to be fractal in nature. If CPT soundings are available at 
the target site for which the stochastic soil model is to be applied then all of the fractal 
parameters, including the spectral exponent, can be estimated at the site. In that case, 
the major use of this study is in establishing basis for the use of the fractal model and 
an indication of the variability of the estimators. 

Alternatively, if data taken at a similar target site are sufficient only to establish the 
mean and variance of the desired soil property, then an a-priori second moment model 
for the vertical soil variability would have 'Y = l.9, a lower frequency cutoff equal to 
about 2tr / D, where D is the soil depth, and a spectral intensity G 0 computed so that the 
area under the spectral density function is equal to the estimated variance (see Eq. 7). 

Clearly there is much work yet to be done on the inferential characterimtion of soils. 
For one, this study considers a hypothetical single site, a composite of the 5 sites in the 
NGF.S program and ignores information about site-specific geology, layering, and soil 
type (clay v. sand). The issues related to the choice of a lower cutoff frequency need 
additional clarification as this parameter is still somewhat arbitrary, related to the depth 
of the soundings. Also needed is a good error model to distinguish between the real 

soil behaviour and measurement error. Because such a model involves the estimation of 
additional parameters, an even more extensive database may be required in order to make 
confident inferences. It is felt, however, that the methodologies and reasoning set out 
here lay the groundwork for additional inferential studies on one-dimensional (vertical) 
variation in soil properties. In three dimensions, fractal models will presumably still 
apply, so that researchers can concentrate on estimation issues. 
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·Notation 

The following symbols are used in this paper: 

a, b, r = constants 

6(r;) =estimated covariance function at discrete lag r; 

D = CPT sample length 

n, =fractal dimension 

f. = side friction from CPf data, kPa 

G(w) =one-sided spectral density function 

0(w) = sample one-sided spectral density function 

G0 = intensity parameter 

ao =estimated spectral intensity parameter 

H = Hurst or self-similarity coefficient 

m = scale (dilation) index for wavelet basis 

n =number of observations in a sample of X(z) 

qc = cone resistance from CPf data, kPa 

lf(r;) =estimated variogram 

Xi =random value of transformed CPf data at 

Xi,; = average of X;, X;. i. ... , X;+; 

Xj = random wavelet coefficient 

xi = observed value of transformed CPf data at z; 
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z = depth coordinate 

zi = discrete points along z 
'Y = spectra! exponent in fractal model 

")- = estimated spectral exponent 

i)'(i) =sample discrete variance function 

= incremental distance between observations 

u) =differencing operation on G(w) 

f =residual random process 

(}=scale of fluctuation 

{) = estimated scale of fluctuation 

(}* = equivalent scale of fluctuation 

J.Lx =mean of X(z) 

P,x =estimated mean of X(z) 

µ, = pore pressure from CPT data, kPa 

fX.r;) =estimated correlation function at discrete lag r; 

ai- =variance of X(z) 

ai- =estimated variance of X(z) 

T = separation distance 

r; = discrete separation distance, = j 

d = representative length 

w = frequency or wavenumber 

w0 = lower frequency cutoff 
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Abstract 

A New Approach to Site Characterization Using 

Generalized Regression Neural Networks 

C. H. Juang1 and T. Jiang2 

Site characterization is an important task in geotechnical engineering practice. 

The ultimate goal in site characterization is to be able to estimate in situ soil 

properties at any half-space point at a site based on limited tests. This estimate 

may be a point estimate or in terms of some statistical parameters. Geostatistical 

and random field methods have been applied with various degrees of success. 

This paper presents a new approach, based on artificial neural network, for site 

characterization. Emphasis is placed on application of generalized regression 

neural networks for site characterization. The results show that neural network 

approach has a potential to be a practical tool for site characterization. 

Introduction 

The ultimate goal in site characterization is to be able to estimate the in situ soil 

properties at any half-space (subsurface) point at a site based on limited number 

of tests. In the conventional approach, the engineer characterizes a site based on 

limited test results and interprets them in terms of working soil profiles. These 

working profiles represent a simplified model of the in situ soil properties. The 

task of establishing a working profile requires generalization of soil properties 

based on limited test data. In this paper, a new approach using neural network 

technology is developed for the very task of soil property generalization. 
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Mapping and predicting in situ soil properties is a very challenging task 

(Tabba and Yong, 198la, b). Uncertainty about the properties of in situ soils may 

come from various sources including spatial variability, measurement noise, 

measurement and model bias, and statistical error due to limited measurements 

(Baecher, 1986). To better characterize in situ soil properties and to provide a 

basis for subsequent probabilistic analysis, probability theory and geostatistics 

have been attempted. The classical work on random field for probabilistic site 

characterization has been documented by VanMarcke (1983). Characterization of 

spatial variability of soils using geostatistics has been reported (Soulie et al. 1990; 

Chiasson et al. 1995; DeGroot, 1996). Random field theory and geostatistics in 

site characterization using the National Geotechnical Experimentation Sites 

(NGES) data have been reported (Fenton, 1998; Kulatilake, 1998; Wu, 1998). 

The approaches taken by the exiting probabilistic and geostatistics 

methods for site characterization may be viewed as a calibration process. Limited 

soil test data are used to calibrate a theory or model, i.e., to estimate some 

undetermined coefficients in the model or to derive some statistical parameters 

that characterize the site. In the present study, a different approach to site 

characterization based on artificial neural network (ANN) is taken. The neural 

network approach, which does not require a specific physical model to begin with, 

focuses on learning of patterns in the data. 

Generalized Regression Neural Networks 

ANN technology has been applied to address many civil engineering problems 

(Adeli, 2001). This technology has been shown to be effective in two general 

types of data analysis: classification and function approximation. The problem of 

site characterization is treated as a task of function approximation in this paper. 

In essence, an unknown function, u = j(x,y,z) where u is a soil parameter, x, y, and 

z are the coordinates of a half-space (subsurface) point, and f is the unknown 

function, is to be approximately characterized based on limited test data of u. 

More specifically, the problem of site characterization is seen as a task to obtain 

an approximation of this unknown function/ 

An artificial neural network learns from examples (i.e., input and output 

pairs). The goal of network learning is to generalize the relationship between the 

input and the output. To achieve the goal of generalization, the network needs to 

be trained and tested. Thus, training and testing are two major tasks in the 

development of a neural network. Generally, all available data for the 

development of a neural network is separated randomly into two subsets, a 

training data subset and a testing data subset. A neural network with the desired 

topology and training criteria is then preceded with the task of training, followed 

by the task of testing. In many cases, another data are obtained to further validate 

the trained and tested network. 
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Two types of neural networks, backpropagation (BP) network and radial 

basis (RB) networks, are commonly used for function approximation. BP 

networks use backpropagation algorithm (Rumelhart et al., 1986) to gradually 

reduce the prediction error of the trained network to meet a training goal of error. 

BP networks with an input layer, a sigmoid hidden layer, and a linear output layer 

are capable of approximating any function with a finite number of discontinuities 

(Demuth and Beale, 1999). Note that BP networks perform global mapping, 

meaning each and every input activates all neurons connected to it and causes an 

output. In some problems, such as site characterization, soil property at a half­

space point could be more accurately estimated based on the soil property at its 

neighboring half-space points than that at far away locations. In such cases, it 

may be desirable to perform local mapping, meaning only the input near a 

receptive field (i.e., a range centered at that input) produces an activation of 

neurons. The concept of local mapping is analogous to kriging operation in 

geostatistics. In the present study, generalized regression neural network, which 

is a variant of RB network (Specht, 1991 ), is utilized to approximate the unknown 

function u = f (x,y,z). 

Generalized regression neural network (GRNN) consists of three layers, 

the input layer, the hidden layer and the output layer. In a GRNN, the hidden 

layer is a nonlinear local mapping. This layer contains radial-basis neurons that 

use the Gaussian transfer function (Figure 1 ). The Gaussian function is centered 

over each receptive field in the input space. If an input vector lies in a receptive 

field, the corresponding local neurons in the hidden layer will be activated. On the 

other hand, if an input vector lies outside a receptive field, the corresponding 

hidden neurons will not be activated. 

In a GRNN design (Figure 2), each training vector has a corresponding 

neuron in the hidden layer. The weight matrix WR in the hidden layer, a radial 

basis layer, is simply a collection of all training vectors presented to the network. 

When a new input vector is presented to the network, the similarity in terms of 

distance (dist) between this new input vector with each of those stored in WR is 

calculated: 

dist =IX -Wif I, for j =l, Q (1) 

where Q =number of neurons in the hidden layer; X= input vector, dist= distance 

between X and W J. The calculated distance is then adjusted by the bias, b: 

b = 0.8326/s (2) 

(3) 
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