
 

 

Enhancing the Performance of Multiobjective Evolutionary Algorithms for 
Sanitary Sewer Rehabilitation Problems 

Olufunso Ogidan
1
; Bruno Itaquy

2
; and Marcio Giacomoni

3
 

1Ph.D. Candidate, Environmental Science and Engineering Program, Univ. of Texas at San Antonio, 

One UTSA Circle, San Antonio, TX 78249. E-mail: olufunso.ogidan@utsa.edu  

2M.S. Student, Dept. of Civil and Environmental Engineering, Univ. of Texas at San Antonio, One 

UTSA Circle, San Antonio, TX 78249. E-mail: bruno.itaquy@utsa.edu  

3Assistant Professor, Dept. of Civil and Environmental Engineering, Univ. of Texas at San Antonio, 

One UTSA Circle, San Antonio, TX 78249. E-mail: marcio.giacomoni@utsa.edu  

Abstract 

The application of evolutionary algorithms (EA) to optimize the rehabilitation 

of existing sanitary sewer systems is challenging because sewer network are complex 

and requires computationally demanding hydraulic models to obtain accurate 

representation of the system. Additionally, the large number of conduits in a typical 

sewer network makes it difficult to find the near optimal solutions within a few 

number of iterations of optimization algorithms. To address this problem, there is a 

need for EA operators that requires fewer number of function evaluations and 

converge to near optimum solutions faster. A new operator is explored to enhance the 

performance of multiobjective evolutionary algorithms (MOEA) for sanitary sewer 

rehabilitation optimization problem. The proposed operator is based on the 

nondominated sorting evolutionary strategies (NSES) which combines the Pareto 

optimality of the nondominated sorting genetic algorithm (NSGA II) with evolution 

strategies (ES). The operator is based on a graph of topologically connected conduits 

so as to guide the search toward known SSOs locations, thereby speeding up the 

convergence time. The MOEA is designed to find solutions that address two 

conflicting objectives: maximize sanitary sewer overflow (SSO) reduction and 

minimize rehabilitation cost. The hydraulics of the network is modeled using the EPA 

storm water management model (SWMM). The proposed operator is applied to an 

existing sewer network in the eastern San Antonio water system (SAWS) network. 

INTRODUCTION 

Sanitary sewer systems are critical infrastructures and are design to convey 

residential, commercial and industrial wastewater to treatment facilities.  Insufficient 

capacity or excess flow from rain derived infiltration and inflow (RDII) could result 

in unintentional discharge of the sewage from the network. This discharge is referred 

to as sanitary sewer overflows (SSOs). Current rehabilitation approaches to resolving 

SSOs typically involves retrofitting existing sewer with larger diameters conduits to 

enhance flow capacity. One of the drawbacks of pipe capacity enhancement is that 

changes to one segment in a network can result in further hydraulic loading on other 

parts of the network, thereby causing more SSOs elsewhere in the system. Because of 
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budgetary constraints, it is infeasible to upgrade the entire system at once. 

Optimization algorithms can be used to determine the best rehabilitation plans that 

maximize SSO reduction and minimize rehabilitation costs.  Combining optimization 

algorithms with hydraulic models can identify good solutions with respect to 

hydraulic efficiency of the entire network and costs.   

Although optimization algorithms have been used in combined sewer systems, 

the literature about their use in rehabilitation of sanitary sewer problems is more 

limited.  Moreover, most of the previous studies have applied optimization techniques 

in the design of new wastewater collection systems but not in a rehabilitation stage. 

For instance, Wright et al. (2001)  coupled a long-term hydrologic simulation model 

with a Genetic Algorithm (GA) to identify least cost design solutions, as well as to 

identify non-inferior set of solutions to characterize the tradeoff between cost and 

reliability of the system. Liang et al. (2004) applied GA and Tabu Search (TS) (Liang 

et al., 2004) for designing gravity wastewater collection systems. An adaptive rule 

and dynamic search strategy was developed to ensure that only solutions that don’t 

violate the constraints can be generated.  The adaptive rule “fixes” chromosomes that 

violate the diameter progression constraint by replacing violating genes. The 

performance of GA and TS were compared to conventional design, both optimization 

techniques finding significant reduction in construction costs for a case study of 6.2 

km of wastewater collection system.  Sun et al. (2011) proposed a GA based 

framework for the optimal design of storm sewer network that minimize the design 

cost and expected flood damage to determine the optimal diameters and slopes of the 

pipe networks.  Rathnayake and Tanyimboh (2015) implemented a multiobjective 

evolutionary optimization for control of combined sewer overflows (CSO) that 

consider unsteady sewer flow, the pollution load to receiving water bodies and the 

associated treatment cost of the excess RDII. The optimization problem was used to 

explore the tradeoffs between CSO from storm overflow tanks and the treatment costs 

of the fraction of the excess water that reached the treatment facility. Yazdi et al. 

(2015) proposed a risk-based optimization approach that combined the Monte Carlo 

simulation, a MOEA and hydrodynamic model to determine the solutions that 

represent compromise between the objectives of pipe and pump renewal costs and 

expected overflow reduction capacity in 44 ha storm sewer network in Seoul, South 

Korea.  

All the aforementioned studies applied GA-based evolutionary algorithms that 

implements crossover and mutation operators to facilitate the exploration and 

exploitation of the search space to find near optima solutions. The application of the 

crossover operator in sewer system optimization problem however, could result in 

solutions that do not reflect the hydraulic flow path of wastewater in the network. For 

example, during crossover, the combination of two parents’ genes may result in 

offspring vectors that specify a new solution at a distant location from the original 

solution causing genetic drift whereby a large part of the search space is not explored. 

Additionally, the application of EA to sewer rehabilitation problem is 

computationally demanding because EA require a large number of functional 

evaluations of complex hydraulic models to solve the SSO problems. 
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To tackle these challenges, an optimization approach is needed that is able to 

find near optima solution with fewer functional evaluation of the hydraulic models 

than the traditional GA-based algorithms.  Previous studies have sought to address 

similar problems in drinking water distribution systems. Zechman and Ranjithan 

(2009) implemented an Evolutionary Strategies (ES)  that uses only mutation operator 

as the evolutionary parameter to search for contamination source in a virtual city 

drinking water system. Kanta et al. (2012) built on this approach to develop the 

nondominated sorting evolutionary strategy (NSES) that combined the speed of 

evolutionary strategies with the Pareto optimality of NSGAII. In both of these studies, 

the probabilistic mutation operators are based on a graph of the connected pipes in a 

network where the mean of the curve is the location of the current pipe. 

In this study, a specialized operator is combined with the NSES to guide the 

search of the multiobjective EA toward known SSO locations in the sewer system to 

enhance the convergence time of the optimization.  The simulation-optimization 

framework is linked with the Environmental Protection Agency (EPA) Storm Water 

Management Model (SWMM) to perform hydraulic routing and to calculate the 

number of flooded nodes in the system during a design storm event.  The 

methodology is tested in a sewershed of the San Antonio Water Systems (SAWS) 

sewer network, located in San Antonio, Texas. 

CASE STUDY DESCRIPTION 

The case study is the E-07-15 sewershed inside the San Antonio Water 

Systems (SAWS) eastern sewer network with an area equal to 20.4 square miles, 

which represents 3% of the entire wastewater network. The sewershed is composed of 

3,304 conduits connected via 3,155 manholes to form a network that is 160.8 miles 

long and service 36,000 inhabitants. The sewershed is monitored for flow at six flow 

meters which enable its delineation to six metershed (Figure 1). Approximately 70% 

of the population resides in the three northern metersheds, which is comprised 

primarily of residential land use. The central and two southern metersheds contain 

approximately 30% of the total population and are primarily commercial properties. 

Under existing condition, 23 nodes overflowed in the network during a 5 year – 6 

hour design storm (106.7 mm) which are shown in Figure 1as red circles. 
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Figure 1- Case study showing metersheds, flow monitors and location and volume of 

overflows. 

PROBLEM FORMULATION 

Objective Functions 
The SSO optimization problem is posed in this study to explore the tradeoffs 

between two conflicting objectives: maximization of SSO reduction and minimization 

of rehabilitation costs. The multiobjective problem is represented mathematically as 

follows: 

minimize ଵ݂ = ൭෍ ஽ೖܥ × ௞ܮ + ෍ ௡௡௠ܥ
௡ୀ଴

௡௣
௞ୀ଴ ൱ + ሺ1 +  ሻݕ

maximize ଶ݂ = 1 − ቌ෍ ෍ ܵܵ ௝ܱ௧்
௧ୀ଴

ே
௝ୀ଴ ෍ ܱܵܵ஼௨௥௥൘ ቍ		 
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Subject to the following: ܦ௞߳ሼ݀ሽ; 					݇ = 1,2, … , ௞ܦ ݌݊ ≤ ݌݊ ௞ାଵܦ ≤ ∅ 

where, ݊݌ is the number of rehabilitated pipes; ܥ஽ೖ is the unit cost per length of pipe 

(݇) with diameter with ܦ௞ and length ܮ௞; ܥ஽ೖ include Post and Pre-Construction 

sanitary sewer main television inspection, trench excavation cost and hot mix 

asphaltic concrete pavement replacement; ܥ௡ is the unit cost of replacing a manhole; ݊݉ is the total number of nodes (manholes) in the network that must be replaced 

when ݊݌ pipes are rehabilitated; ݕ is the fraction of unit costs that represent the cost 

of mobilization of personnel and equipment, right of way and by pass pumping;  ∅ is 

the user defined maximum number of replacement segments; ܰ is the total number of 

nodes in the network; ܶ is the total simulation time. ܵܵ ௝ܱ௧ is a binary variable (0 or 1) 

that represents if an overflow occurs in the node ݆ at time ݐ and ܱܵܵ஼௨௥௥ is the 

number of overflows that occurred under existing condition. 

Decision Variables 
The decision variables is composed of three parts; the first is the binary genes 

that determine whether the segment will be replaced; the second is an integer number 

representing the node immediately upstream of the first conduit in the replaced 

segment and the last is the commercial diameter increase from the existing sewer pipe 

diameter. As typical in ES, each gene is represented by a normal parameter, ߙ௞ which 

is the primary decision variables and an endogenous strategy parameter, ߪ௞ which is 

used to mutate the individuals. The strategy parameters have to be carefully defined 

in order to maintain a balance between exploration and exploitation during the search. 

In the beginning of the evolutionary process, the search must avoid premature 

convergence by exploring the search space. Towards the end of the search, the 

algorithm favors exploitation by decreasing the value of ߪ௞, which generates 

offspring solutions with similar characteristics to the parent generation. 

Mutation 

In each generation ݃, the standard deviation ߪ௞೔ is first mutated using normal 

distribution to generate a new value ߪ௞೔ᇱ . Using the new value for the standard 

deviation, the parent, ߙ௞೔ is mutated to new individual ߙ௞೔ᇱ . For the binary part of the 

chromosome, the mutation is realized by random bit-flips of the parent vector value; 

in this case, the standard deviation is used to determine whether the bit-flips will 

occur for the current parent gene. The mutant genes for the pipe location are selected 

from an array of topologically connected close conduits to the current parent. The 

distance of the offspring from the parent is determined by the mutated standard 

deviation. This will ensure that only conduits that are topologically adjacent to the 

parent genes are selected. The direction of the offspring search is determined by a 

specialized operator that maintains an external archive of distances to nearest SSO 

location for the parent genes. The search will move upstream at generation,	݃ + 1 if 
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Modeling Component 
The hydraulic model of the E-07-15 sewershed was built using a pre-

processing GIS script tool that generates the input files to be imported into the 

modeling package EPA–SWMM.  

GIS Pre-Processing:   

A GIS pre-processing algorithm was implemented using the Python editor 

ArcPy to automate the generation of sanitary sewer models.  The input GIS layers 

are: parcels, traffic analysis zone (TAZ), apartments, manholes, conduits, and rainfall 

gauges.  The resulting algorithm generates final manholes, conduits, and 

subcatchments with populated information used in the model such as drainage area 

and population per subcatchment.  The result algorithm generates a final manholes, 

conduits, and subcatchments with populated information used in the model such as: 

drainage area, population per subcatchment, land use (residential or commercial), 

conduits Manning’s roughness, nearest rain gauge IDs and RADAR grid cell.   

Model Calibration: 

After the model was generated and imported into SWMM, a two-step 

calibration was performed.  First, the sewershed was calibrated for dry weather flows 

(DWF), followed by one for wet-weather flows.  DWF are continuous inflows that 

typically reflect the contribution from sanitary sewage in sewer systems or base flows 

in pipes and stream channels and is computed using the following equation: ܳ௧஽ௐி = ሺܲோ௘௦ × ܹܷതതതതതோ௘௦ + ܲ஼௢௠ × ܹܷതതതതത஼௢௠ሻ × 	௧ܭ
where ܳ௧஽ௐி is hourly flow into a node (MGD), ܲோ௘௦ is the contributing residential 

population, ܲ஼௢௠ is the contributing commercial population, ܹܷതതതതതோ௘௦ and ܹܷതതതതത஼௢௠ are 

the average water use for residential and commercial use, respectively (70 and 60 

gallons per capita per day), and ܭ௧ is the hourly multiplier.   SWMM allows the 

definition of DWF patterns for weekdays and weekends.  48 hourly multipliers were 

estimated using the nonlinear Generalized Reduced Gradient (GRG) optimization 

algorithm in Microsoft Excel to minimize the root mean square error (RMSE) 

between observed DWF and simulated DWF hydrograph for a typical weekday and 

weekend.  Figure 3 shows the observed and simulated DWF hydrographs for a 

weekday and weekend measured in the South (ES19) metershed.  
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Figure 3 � Observed and simulated hydrographs during dry days for weekdays (right 

column) and weekends (left column) for the South (ES19) metershed. 

A manual WWF calibration was performed using observed rainfall, NEXRAD 

radar, and flow data for three metersheds, which presented reliable flow data during 

the 2.12 inch storm event occurred on May 12
th

 (Figure 4).  In order to improve the 

rainfall representation, raw data of reflectivity recorded by the NEXRAD KEWX � 

AUSTIN/S ANT, TX, located in New Braunfels, TX, was processed and transformed 

to rainfall intensity in a five-minute interval and a spatial resolution of 0.7 kilometer 

grid cell size.  SWMM calculates RDII using the RTK method (Walski, Barnard, & 

Haestad Methods, 2004), that fits three triangular hydrographs, each representing a 

rapid inflow, an intermediate infiltration and inflow, and a long-term infiltration 

period.  Each hydrograph is defined by three parameters. R is the fraction of rainfall 

volume that enters the sewer system. T is the time from the onset of rainfall to the 

peak of the UH in hours, and K is the ratio of time to recession of the UH to the time 

to peak. Figure 4 shows the observed and simulated hydrographs and the rainfall 

intensity from May 12
th
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