
Table 1.  Trend test results. Significant test statistic values (at 5% significance 

level) and related p-values in bracket are marked in italic. 

Rain gauge 
Observation 

period 
tS MK 

Variation 

[mm/years] 

Trapani 1881-2010 -2.931 (0.004) -2.733 (0.006) -0.903 

Agrigento 1886-2009 0.008 (0.994) -0.389 (0.698) 0.003 

Petralia Sottana 1881-2010 2.115 (0.036) 1.972 (0.05) 0.900 

Caltanissetta 1879-2010 -2.074 (0.040) -2.060 (0.040) -0.744 

 

Furthermore the probabilities of drought of given length l have been computed 

using Eq. (4). The results are shown in Figure 2, where for each rain gauge, the 

probabilities of deficit pt and the probabilities of drought length l=1, l=3 and l=5 years 

are plotted as a function of time.  

 
 

Figure 2. Probabilities of single deficit (pt) and probabilities  of a drought length 

equal to 1 year (fL(1)), 3 years (fL(3) and 5 years (fL(5)) vs. time for the 4 

investigated series. 

 

Inspection of the figure reveals that, as expected, the probability of deficit 

increases in the cases of decreasing trends of precipitation (Trapani and Caltanissetta), 
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decreases for increasing trend (Petralia Sottana) while is constant for Agrigento, which 

does not exhibit trend. This is consistent with the fact that as the series tends to exhibit 

smaller values, the probability of observing values below a fixed threshold increases, 

vice versa for the opposite case. From the figure it can also be inferred that in the case 

of decreasing trend (Trapani and Caltanissetta), the probability of drought length l=1 

exhibits a decreasing pattern with time, whereas the probabilities of longer droughts 

(l=3 and l=5), show an increasing shape. Such apparent contrasting behaviour finds an 

explanation in the fact that as the values tend to be smaller, short droughts tends to be 

less frequent, while more longer droughts are to be expected. 

Finally the expected value of drought duration E[L] has been computed with 

reference to different years, namely 1900, 1950 and 1990 by means of Eq. (11). The 

results are reported in Table 2, from which it can be inferred that, as expected, the 

mean value of drought length tends to increase with time for series exhibiting 

decreasing trend (Trapani and Caltanissetta). Conversely, series with increasing trend 

(Petralia Sottana), tends to exhibit shorter droughts as time progresses. On the other 

hand, Agrigento does not exhibit any significant changes in mean drought length. 

 

Table 2. Non-stationary expected values E[L] of drought length (years) computed 

with reference to different years 

Rain gauge year 1900 year 1950 year 1990 

Trapani 1.771 2.352 3.102 

Agrigento 2.252 2.243 2.235 

Petralia Sottana 2.705 2.146 1.841 

Caltanissetta 1.903 2.332 2.808 

 

CONCLUSIVE REMARKS 

 

Probabilistic characterization of droughts in a non-stationary setting requires the 

development of specific method and tools. In the paper, a methodology for 

characterizing drought length assuming non-stationarity either in the hydrological 

variable or in the demand level (threshold) has been proposed.  

 The derived pdf�s enable to compute the probability of a drought of length l 

starting at time t under the assumption that the probability of observing a deficit pt 

varies with time t. Furthermore, the expected value of the duration of a drought starting 

at a given time t has also been derived. 

Application of the methodology to four long annual precipitation series in 

Sicily exhibiting different degrees of trend in the mean has highlighted the feasibility 

of the derived expression to characterize drought length in the presence of non-

stationarity. Further, the derived methodology is flexible enough to accommodate for 

virtually any type of non-stationarity in the series and the demand, provided it is 

modeled adequately. 
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Ongoing research is oriented to extend the results to other drought 

characteristics (e.g. severity, intensity), as well as to better take into account the 

inevitable uncertainty related to the assessment of non-stationarity in hydrological 

series. 
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Abstract 

Accurate estimate of precipitation is of paramount importance for assessing the 

hydrologic response of a river basin. Weather radar data integrated with rain gauge 

measurements are applied to characterize the spatial feature of the storm event 

producing precipitation over the basin. Ordinary kriging of rain gauge data, mean field 

bias, Brandes spatial adjustment, conditional merging (CM), and local bias techniques 

are applied in this study to evaluate the performance of these radar-rain gauge merging 

methods for hydrologic modelling of the Upper Thames River basin (UTRb), south-

western Ontario, Canada. Singularity-sensitive Bayesian merging method (SSBM) with 

a fine spatial resolution was also applied to retain the singularity character of the rainfall 

event. Rainfall�runoff simulations were carried out for three major storm events 

recorded in the UTRb using the HEC-HMS 4.0 hydrologic model. River flow analysis 

was performed for the comparison of results of HEC-RAS 4.1 hydraulic model with the 

observed rating curve. A novel methodology involving a dual-storage system is 

proposed to model three sub-basins of UTRb which displayed skewed and spiked 

observed runoff hydrographs. Using this dual-storage system for the three sub-basins it 

is found that CM and SSBM merging methods yielded optimal Nash-Sutcliffe efficiency 

coefficients for the prediction of runoff from these sub-basins.    

 

Keywords: Modelling; Rainfall-runoff; Radar; Merging methods; Calibration; 

Validation. 

 

INTRODUCTION 

 

Assessment of the hydrologic response of a river basin is essential to evaluate 

characteristics of floods that may arise as a result of rainfall events over the basin. It 
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requires quantitative estimation of precipitation over the basin at high spatial and 

temporal resolutions. Rainfall measurements obtained by rain gauge or radar 

measurements alone do not precisely qualify for direct application in hydrologic analysis 

due to their inherent weaknesses in terms of spatial and temporal uncertainties 

(McMillan et al., 2011). Rain-gauge networks provide reasonable temporal 

characteristics of rainfall with a rough estimate of the spatial variability. Systematic and 

calibration errors associated with rain gauges add further to the uncertainty of this 

measurement technique. However, measurements obtained by weather radar display 

better spatial and temporal resolution (Wilson and Brandes, 1979) but electronic 

instability, mis-calibration of the radar system, erroneous beam geometry, non-uniform 

vertical profile of reflectivity (VPR), and erroneous Z-R (reflectivity-rainfall) 

relationship are additional sources of uncertainty in estimates from radar (Ciach et al., 

2007). 

Rain-gauge networks integrated with weather radar are widely applied to capture the 

real-time data pertaining to rainfall characteristics. Several radar-rain gauge merging 

methods are available to reduce or eliminate the inherent weaknesses of these 

techniques. Previous research in this area (see, e.g., Kalinga and Gan, 2006; Kim et al., 

2008; Looper and Vieux, 2012; Wang et al., 2013; etc.) has shown that rainfall estimates 

obtained by merging radar observations with rain gauge data could significantly improve 

the accuracy of hydrologic modelling. However, rain-gauge network density, wind drift 

and storm characteristics may introduce additional uncertainty in precipitation estimates, 

thus affecting the performance of the merging methods. Goudenhoofdt and Delobbe 

(2009) determined the optimal merging method for a particular rain gauge network 

density in a watershed in Belgium. McKee (2015) investigated the effect of rain-gauge 

density and other location-specific factors on the performance of radar-rain gauge 

merging methods for prediction of rainfall accumulations and hydrological flows in 

southwestern Ontario, Canada. Resolving radar reflectivity into convective and 

stratiform components, Chumchean et al. (2013) proposed a storm classification method 

for rainfall estimation, however limited studies were performed to assess the effect of 

types of storms on the suitability of merging methods. 

The goal of the present study is to evaluate the performances of six radar-rain gauge 

merging methods, including singularity-sensitive Bayesian merging method proposed by 

Wang and Onof (2015), on the prediction of hydrologic response. The Upper Thames 

River basin (UTRb), located in southwestern Ontario, Canada, is used as a case study. In 

order to capture the skewed and spiked character of the observed hydrographs from 

select sub-basins, a novel methodology is proposed to predict the runoff hydrograph of 

those sub-basins.  

RADAR-RAIN GAUGE MERGING METHODS 

 

Radar-rain gauge merging methods are classified according to two categories (Wang et 

al., 2013): bias reduction and error variance minimization techniques. Rain-gauge 

ordinary kriged, mean field bias correction, Brandes spatial adjustment, local bias 
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correction with ordinary kriging, and range dependent adjustments are bias-reduction 

techniques, whereas error-variance minimization comprises conditional merging and 

Bayesian data combination. A brief overview of these methods is given in the sub-

sections below: 

Rain-gauge ordinary kriged (RGOK)  
Rain gauge data is interpolated across the spatial field. Variograms and covariance 

functions are created to estimate the statistical dependence (called spatial 

autocorrelation) based on the autocorrelation model for predicting precipitation.   

Mean field bias correction (MFBC) 

The MFBC method applies a single correction factor (Hitschfeld and Bordan, 1954) 

across the entire radar field to remove bias, according to the following relation:  
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Brandes spatial adjustment (BSA) 
In contrast to the MFBC, BSA method (Brandes, 1975) assumes biases to be spatially 
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where  Di = Gi � F1,i . The corrected precipitation at bin i is then obtained by multiplying 

the correction factors with radar observations.  

Local bias correction with ordinary kriging (LBOK) 
Kriging is an optimal interpolation technique that applies a weighted moving average to 

produce the local estimate of a regionalized variable (correction factor in the present 

context). The correction factors are determined for each gauge location to find the semi-
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variance to produce variograms. Kriging weights are then calculated from these 

variograms to obtain correction factors for interpolated locations.  

Range dependent adjustments (RDA) 
RDA assumes radar bias to be a function of distance from the radar tower. Uncertainties 

in radar estimates accumulates with distance from the radar tower due to the 

overshooting of the beam, beam broadening, VPR and beam attenuation (Creutin et al., 

2000). The correction factor is expressed on a log-scale and the range is approximated 

by a second order polynomial whose coefficients are determined by a least square fit 

method, following the relation: 

cbrarC ++=
2log                                                                       

where r is the distance from radar tower to radar bin i, and a, b and c are coefficients 

determined by least square method.  

Conditional merging (CM) 

CM assumes radar observation produce a true field of unknown values, while rain 

gauges produce an unknown field of true values (Sinclair and Pegram, 2005). This 

technique works in three steps: 1) radar values are interpolated for gauge locations to 

create the radar kriged field; 2) the correction field is determined as the difference of the 

kriged and original radar field data; and 3) the correction is added to the kriged rain 

gauge surface to obtain corrected rainfall estimates. 

Bayesian data combination (BDC) 

BDC assumes the difference between the radar and interpolated rain gauge estimates to 

be an intrinsic random field characterized by an experimental variogram (Todini, 2001). 

It involves: 1) block-kriging of the rain gauge estimates to fit the radar grid and to obtain 

the difference between the two measurements at each grid location; 2) fitting the error 

field with an experimental variogram to develop a smooth error field; and 3) applying a 

Kalman filter to combine the kriged gauge estimates with the modelled error variogram.   

Singularity�sensitive Bayesian merging method (SSBM) 

Wang et al. (2013) found peak runoff from a small drainage area to be significantly 

underestimated by several merging methods. They inferred that first or second order 

statistical moment approximations upon which most of the techniques are based cannot 

capture non-normalities in precipitation estimates. To preserve such local extremes, 

Wang and Onof (2015) integrated BDC with local singularity analysis (Cheng et al., 

1994; Schertzer and Lovejoy, 1987) and proposed SSBM that involves separation of 

singularity indices from the radar rainfall image, merging of non-singular radar image 

with block-kriged rain gauge field, application of a Kalman filter on the resulting field to 

give non-singular Bayesian merged rainfall field and addition of singularity indices to 

obtain the final singularity-sensitive Bayesian merged rainfall field. This technique was 

found effective in capturing the non-normalities or singularities in runoff from the small-

scale urban area of London, England. 

HYDROLOGIC DATA 

Basin characteristics 

The Upper Thames River basin (UTRb) in south-western Ontario, Canada, constitutes 

the study area in the present research. The Upper Thames River Conservation Authority 
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(UTRCA) has divided basin (3,482 km
2
) into 28 sub-watersheds, as shown in Fig 1a. 

Three flood control reservoirs at Pittock, Woodstock and Fanshawe serve as buffers to 

minimize the risk of flooding in prominent urban centres of the UTRb. With the 

exception of a few large urban centres of London, Stratford and Woodstock, a large 

portion of watershed covers agricultural farms. Approximately 75% land is in 

agricultural use, 14% is covered with natural vegetation and 10% is urban or built-up.  

The soil in the UTRb is composed of silty loam (36%), clay load (26%), sandy loam 

(10%) and silty clay loam (6%).  

 

  
Fig.1. a) Upper Thames River basin (UTRb) and associated sub-basins (source 

UTRCA, 2012); and b) Radar and rain gauge locations 

 

Data source 

UTRCA and Environment Canada (EC) monitors water levels at 23 locations along the 

main channel of the Thames River to determine hourly variation in flow rates. The 

locations of 14 rain gauges representing optimal rain gauge density are shown in Fig. 1b. 

Radar data, provided by EC�s Meteorological Research Division for the Exeter radar 

station, is used in this study. The technical specifications for the weather radar system 

are: Range-120 km, Theta-360°, Bin Resolution-1.000 km, Azimuthal Resolution-

1.000°, Bits 8, Site ID WSO, Site name EXETER, Latitude 43.37°and Longitude -

81.38°. 

 

Rainfall events 

Table 1 presents the characteristics of three major rainfall events that occurred on July 8, 

September 5-6, and September 10-11, 2014. Rain events 1 and 2 were high intensity 

localised rainfall, whereas Rain event 3 was relatively uniform in nature across the 

World Environmental and Water Resources Congress 2016 363

© ASCE

https://www.civilenghub.com/ASCE/175128247/WEWRC-2016-Watershed-Management-Irrigation-and-Drainage-and-Water-Resources-Planning-and-Management?src=spdf
http://ascelibrary.org/action/showImage?doi=10.1061/9780784479858&iName=master.img-2280.jpg&w=387&h=204
http://ascelibrary.org/action/showImage?doi=10.1061/9780784479858&iName=master.img-2280.jpg&w=387&h=204


UTRb. Event 2 occurred after a long dry period, whereas Events 1 and 3 had wet 

antecedent soil moisture conditions.  

Rain gauge network 

The density of rain gauge network affects the accuracy of estimated rainfall therefore, in 

conformance to the earlier study of McKee (2015), a network of 14 rain gauges was 

adopted to analyse the hydrologic response of the UTRb. 

 
Fig. 2 Radar images for a) Sep 10, 2014 at 20:00 hrs; and b) Sep 11, 2014 at 00:00 hrs 

Table 1: Characteristics of three major rainfall events 
Rain 

event 

Date 

 

Time (UTC) Duration 

(hr) 

Intensity 

(mm/hr) 

Peak 

Flow 

(m
3
/s) 

Antecedent 

soil 

condition 

1 July 8, 2014 16:00-01:00 11 15.5 138.5 Wet 

2 Sept. 5-6, 

2014 

23:00-10:00 12 43.25 120.0 Dry 

3 Sept. 10 -11, 

2014 

19:00-08:00 14 30.6 240.6 Wet 

 

HYDROLOGIC SIMULATION 

HEC-HMS 4.0 developed by the U.S. Army Corps of Engineers, was applied to 

determine the hydrologic response of the UTRb. A moving patch of 20× 20 km
2
 was 

applied to calculate the rainfall using SSBM (see Fig. 3). Another moving patch of 42 x 

42 km
2
 was also applied but no significant improvement was observed in two different 

calculated precipitation estimates. 

Accounting losses and transform method 

�Initial and constant� loss method and �Clark�s Unit Hydrograph (CUH)�, that considers 

the duration of excess precipitation to be infinitesimally small, were applied. The two 

parameters of the CUH, time of concentration (Tc) and storage coefficient (Sc),  represent 

the time for water to travel from the hydraulically farthest point in the basin to the outlet 

and temporary storage of excess precipitation in the basin as it moves down towards the 

outlet (USACE, 2000), respectively. 
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