
  

Li 2008b; Tsai and Li 2008c). The following section discusses the use of the BMA to 

integrate multiple parameterization methods.   

 

7.6.1 Statistical Inference through Bayesian Model Averaging (BMA) 

 

We consider a set of parameterization methods > ?( ); 1, 2,pM pP � � �  in order to 

estimate the hydraulic conductivity distribution over the same region. Given available 

data ( D ) and multiple parameterization methods (P ), the conditional probability of a 

predicted quantity of interest (0 ) can be obtained through Bayesian model averaging 

(BMA), which is based on the law of total probability (Leamer 1978): 

 

 � � � � � �( ) ( )Pr | Pr | , Pr |p p

p
M M0 � 0;D D D  (7.47) 

 

where � �Pr |0 D  is the conditional probability of the predicted quantity given data 

D ; and � �( )Pr | , pM0 D  is the conditional probability of the predicted quantity given 

the data D  and a parameterization method ( )pM . In addition, � �( )Pr |pM D  is the 

posterior probability of a parameterization method given data D , which represents 

posterior model weights. The models in the BMA refer to the parameterization 

methods. 

 

According to Bayesian decision theory (Berger 1985), the posterior model probability 

of a parameterization method is  

 

 � � � � � �
� � � �

( ) ( )

( )

( ) ( )

Pr | Pr
Pr |

Pr | Pr

p p

p

j j

j

M M
M

M M
�
;

D
D

D
  (7.48) 

 

where � �( )Pr | 1p

p
M �; D . The prior probabilities of parameterization methods also 

represent prior model weights and � �( )Pr 1p

p
M �; . 

 

The prior model probability is a subjective value and is based on the analysts’ prior 

information and their philosophical beliefs. Choosing proper prior probabilities is a 

challenging practical issue, especially in the absence of substantial prior knowledge, 

and usually engenders philosophical debates. It could be argued that in one hand the 

posterior model probability is rather sensitive to the specification of the prior. On the 

other hand, the prior model probability should not dominate the likelihood as 

supported by data. At any rate, it is imperative to avoid using improper prior that 

substantially affects the analysis. A Kullback-Leibler (K-L) prior was suggested by 

Burnham and Anderson (2004) in the prior BIC weights, which lead to the AIC 

weights. Ye et al. (2005) suggested the identification of prior model probabilities 

through the entropy maximization method. If there is no informational support, it is 
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reasonable to have equal prior probabilities as a neutral choice (Hoeting et al. 1999; 

Wasserman 2000).  

 

Considering equal prior probabilities and the KIC, we can approximate the posterior 

model probability as 

 

 � � � �
� �

( )1
2( )

( )1
2

exp KIC
Pr |

exp KIC

p

Dp

j

Dj

M
�

1
�;

D  . (7.49) 

 

Equation (7.49) can be rewritten by considering the KIC difference to the minimum 

KIC value: 

 

 � � � �
� �

( )1
2( )

( )1
2

exp KIC
Pr |

exp KIC

p

Dp

j

Dj

M
� 0

1
� 0;

D  (7.50) 

  

where ( ) ( ) ( )

,minKIC KIC KICp p p

D D D0 � � . Again, the KIC can be replaced by other 

informational criteria as needed.  

 

According to the law of total expectation, the expectation of the predicted quantity is 

 

 B C � �( ) ( )E | E | , Pr |p p

p
M M� �0 � 0� �;D D D . (7.51) 

 

Similarly, the law of total (co)variance obtains the covariance matrix of the predicted 

quantity as 

 

 

B C � �
B C� � B C� � � �

( ) ( )

( ) ( ) ( )

Cov | Cov | , Pr |

E | , E | E | , E | Pr |

p p

p

T
p p p

p

M M

M M M

� �0 � 0� �

� � � �
 0 � 0 0 � 0� � � �

;

;

D D D

D D D D D

(7.52) 

 

The first term on the right side of Equation (7.52) represents the covariance for 

individual parameterization methods (within covariance). The second term represents 

the covariance between different parameterization methods (between covariance). 

 

We note that, in practice, the true groundwater model is impossible to obtain. All the 

results from model selection and model averaging are based on models that are 

imperfect. A 100% model weight in the BMA does not imply a 100% correct model, 

but merely indicates the single best model among candidate models. To be sure, the 

ideal situation is to obtain an exhaustive set of models. However, this is very 

expensive in groundwater modeling. Using a limited number of models is inevitable, 

but with an understanding that model weights calculated by posterior model 
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probabilities are the relative model weights among the selected models, not the true 

model weights over the model space. 

 

7.6.2 Multigeneralized Parameterization (MultiGP) 

 

Applications of the BMA depend on the data D  and the predicted quantity 0  to be 

specified. In this section, we consider multiple generalized parameterization (GP) 

methods to estimate hydraulic conductivity. The data is the sample data data�D p  and 

the predicted quantity is 0 � p .  

 

In the multiGP method, we consider a set of zonal distributions (1) (2){ , , }Z � ( ( �  and 

a set of interpolation methods (1) (2){ , , }I IQ � �  to parameterize the same hydraulic 

conductivity field (( ) using the same hydraulic conductivity data. Combinations of 

these zonal distributions and interpolation methods pose a multiGP scheme that 

involves many GP methods ( )	 Z { ; 1,2, }pM p� -Q � � � . Each GP method has its 

own weighting coefficients > ?( ) ( ) , 1, 2, ,p p

j j m�� �� � . The weighting coefficients 

( )p
�  are the model parameters embedded in the posterior probability � �( )Pr |pM D . 

The mean and covariance of predicted hydraulic conductivity using a GP method are  

 

 ( ) ( ) ( )

GPE | , E | ,p data p pM M� � � �0 � �� � � �D p p p  (7.53) 

 ( ) ( ) ( )

GPCov | , Cov | , Cp data p pM M� � � �0 � �� � � �D p p . (7.54) 

 

The expectation of the BMA hydraulic conductivity is  

 

 
� �

� �

( ) ( )1
2

( )1
2

exp KIC
E |

exp KIC

p p

GP Dpdata

GP j

Dj

� 0
� � � �� � � 0

;
;

p
p p p . (7.55) 

 

The covariance of the BMA hydraulic conductivity is 

 

 
� �� � � �

� �

( ) ( ) ( ) ( )1
2

( )1
2

Cov exp KIC
Cov |

exp KIC

T
p p p p

GP GP GP GP GP Dpdata

j

Dj

� �
 � � � 0� �� �� � �� � � 0

;
;

p p p p
p p . (7.56) 

 

 

7.6.3 BMA Groundwater Inverse Modeling 

 

In BMA groundwater inverse modeling, the optimal weighting coefficients ( )ˆ p
�  of 

individual GP methods need to be estimated using observation data. In this case, the 

data data�D h  would be the observed groundwater heads and the predicted quantity 

0 � h  would be the predicted groundwater heads at the observation space. One 
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cannot use the maximum likelihood of the posterior probability � �Pr |0 D  in 

Equation (7.47) to estimate ( )ˆ p
�  values because optimization will force 100% 

posterior probability to the best GP method that has the minimum KIC (or BIC) value 

and zero posterior probability for rest of the GP methods. Instead, one can implement 

maximum likelihood Bayesian model averaging (MLBMA) (Neuman 2003; Ye et al. 

2004) to obtain optimal ( )ˆ p
�  in � �( )Pr | ,data pM0 � �h D h  or use the inverse methods 

presented in Section 7.4. for individual GP methods. Then, � �( )Pr | , pM0 D  can be 

approximated by � �( ) ( )ˆPr | , ,p pM0 D �  to avoid calculation burden (Draper 1995) for 

BMA predictions.  

 

Another approach that considers the maximum likelihood estimation in 

� �( )Pr | , pM0 D  is the following integration form:  

 

 � � � � � �( ) ( ) ( ) ( ) ( ) ( )Pr | , Pr | , , Pr | ,p p p p p pM M M d0 � 0��
D D � � D � . (7.57) 

 

Because 0  is the predicted quantity at the observation space, � �( )Pr | , pM0 D  can be 

seen as a likelihood function. Using the Laplace approximation, one can obtain  

 

 � �( ( )) 1
exp( KIC )

2
Pr | , p pM 00 1 �D  (7.58) 

 

where ( )KIC p

0  is the KIC with respect to the predicted quantity 0 : 

 

 ( ) ( ) ( ) ( )KIC 2 ln 2 lnp p p pg m 40 0 0� � � 
 F  . (7.59) 

 

The Fisher information matrix is 
( ) 2 ( ) ( ) ( )Ep p p p

i jij
g � �0 0� � � �� � 	 	 	� � � �F , where 

� � � �( ) ( ) ( ) ( ) ( )ˆ ˆln Pr | , , Pr | ,p p p p pg M M0
� �� 0
� �

D � � D .  

  

Then, the optimal ( )ˆ p
�  can be obtained by minimizing the KIC: 

 

 
( )

( )min KIC , 1,2,
p

p p0
' '

�
0 � 1

�  (7.60) 

 

7.6.4 
( )KIC p

D  vs. 
( )KIC p

0  

 

In the general case, ( )KIC p

D  and ( )KIC p

0  are different because the data in 

( ) ( )ˆPr( | , , )p pM0 D �  and the data in ( ) ( )Pr( | , )p pMD �  can differ. For example, one 

merely can use measured hydraulic conductivity data through the cross-validation 
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(CV) approach (Stone 1974) to estimate the �  values. Using CV, data�D p  are the 

measured hydraulic conductivity values and 0  are the cross-validated hydraulic 

conductivity values at the sample locations. This approach has been suggested in Ye 

et al. (2004). Both ( )KIC p

0  and ( )KIC p

D  can be evaluated by the CV method. In 

groundwater inverse modeling, we still can choose data�D p  to calculate ( )KIC p

D  to 

obtain the GP weights in � �( )Pr |pM D  through the CV method. However, ( )KIC p

0  is 

based on the predicted groundwater heads cal0 � h  at the head observation space. In a 

case where the same data are used in both ( ) ( )ˆPr( | , , )p pM0 D �  and ( ) ( )Pr( | , )p pMD � , 
( )KIC p

D  and ( )KIC p

0  have the same forms for the inverse problem. Moreover, ( )KIC p

D  

and ( )KIC p

0  are different when the predicted quantity 0  is at the prediction space, not 

at the observation space. Furthermore, even though ( )KIC p

D  and ( )KIC p

0  are the same 

in the inverse problem, ( )KIC p

D  is mainly used to calculate the importance (weights) 

of individual GP methods in BMA. From a practical viewpoint, ( )KIC p

D  can be 

modified or scaled as the empirical Bayesian inference in order to obtain reasonable 

GP weights. Recently, Tsai and Li (2008b) and Tsai and Li (2008c) introduced a 

variance window to scale ( )KIC p

D  to cope with the narrow window size of Occam’s 

window. However, scaling ( )KIC p

0  should not be considered.   

 

As a consequence, the data D  in BMA in Equation (7.47) actually represent two data 

sets: one data set 0 �D D  for calculating ( )KIC p

0  and the other data set D �D D  for 

calculating ( )KIC p

D . For the KIC case in the following analysis, we consider the prior 

�  distribution in g0  and Dg  to be independent within and between individual GP 

methods and to be uniformly distributed between [0,1]. 

 

7.6.5 Multi-Gaussian Distributions 

 

Consider a subset of data 0 �D D  is used to calculate � �( )Pr | , pM0 D  and the 

prediction ( )( )p0 �  is at the 0D  space. For groundwater inverse modeling purposes, 

� �( ) ( )ˆPr | , ,p pM00 D �  describes the probability of errors between the predicted 

quantity and observation data, and is assumed to be a multi-Gaussian distribution 

with zero mean and covariance matrix 0C . Therefore, the ( )KIC p

0  is 

 

 � �( ) ( ) ( ) ( )KIC ln 2 ln lnp p p pQ n m 40 0 0 0 0� 
 � 
 
C F  (7.61) 

 

where n0  is the number of 0D  and 

 

 � � � �( ) ( ) 1 ( )( ) ( )
T

p p pQ �
0 0 0 0� 0 � 0 �� D C � D  (7.62) 
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is the fitting residual with respect to data, 0D . The Fisher information matrix, ( )p

0F , is 

(Kitanidis and Lane 1985) 

 ( ) 1 1 -1

( ) ( ) ( ) ( )

1
Tr

2

T
p

p p p pij
i j i j� � � �

� �0 0
0 0 0 0

� �	 	 	0 	0
� � � 
� �� � 	 	 	 	� �� �

C C
F C C C . (7.63) 

 

If the covariance matrix 0D  is constant or the trace is relatively small, the Fisher 

information matrix can be approximated to the inverse covariance matrix of the 

estimated weighting coefficients:  

 � � 1
( ) -1 ( )

( ) ( )
Cov

T
p p

p pij
i j� �

�

0 0

	0 	0
� � � 1� � 	 	
F C � . (7.64) 

 

Yeh and Yoon (1981) considered the groundwater heads 0 � h  in Equation (7.64). 

 

Similarly, the subset of data D �D D  is used to calculate model weights 

� �( )Pr | pMD , and (p)( )cal
D �  is the calculated data corresponding to the DD  space. 

The error between the calculated data and observation data is assumed to be multi-

Gaussian with zero mean and covariance matrix DC  in the likelihood function 

� �( ) ( )ˆPr | ,p p

D MD � . Accordingly, the ( )KIC p

D  is   

 

 � �( ) ( ) ( ) ( )KIC ln 2 ln lnp p p p

D D D D DQ n m 4� 
 � 
 
C F  (7.65) 

 

where Dn  is the number of DD  and  

 

 � � � �( ) 1
T

p cal cal

D D D DQ �� � �D D C D D  (7.66) 

 

is the fitting residual with respect to data, DD . The Fisher information matrix, ( )p

DF , is 

 

 ( ) 1 1 -1

( ) ( ) ( ) ( )

1
Tr

2

Tcal cal
p D D

D D D Dp p p pij
i j i j� � � �

� �
� �	 	 	 	

� � � 
� �� � 	 	 	 	� �� �

C C D D
F C C C . (7.67) 

 

The multi-standard normal distribution is also applicable to BIC as follows: 

 

 

( ) ( ) ( )

( ) ( ) ( )

BIC = ln 2 ln

BIC = ln 2

ln

lln n

p p p

p p p

D D DD D

Q m

n nQ

n

m

n 4

4
00 0 00 




 








C

C
 (7.68) 
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7.7 Experimental Design 
 

7.7.1 Experimental Design for Parameter Estimation 

 

Experimental design deals with the selection of experimental conditions such that a 

specified criterion is optimized.  The experimental conditions also are referred to as 

the decision variables. The decision variables of a groundwater experimental design 

generally consist of two groups: the excitation group and the observation group (Hsu 

and Yeh 1989; Sun 1994). In the excitation group, the decision variables may include 

the number and locations of pumping and injection wells, the pumping and injection 

rates, stress periods of pumping and injection, and artificial changes of boundary 

conditions. In the observation group, the decision variables may include the state 

variables to be observed, the number and locations of observation wells, and the 

observation frequency. When the decision variables in the excitation group are fixed, 

experimental design simplifies to observation network design. The optimization of 

experimental design is generally subject to a set of constraints. The constraints 

frequently encountered include: budget, allowable drawdown at selected locations, 

maximum pumping/recharge rates, duration of the experiment, allowable time 

interval between consecutive measurements, and reliability of the estimated 

parameters. To apply the optimal experimental design in practice requires that we: 1) 

establish a criterion (performance measure) so that different experimental designs can 

be compared, and 2) develop an algorithm so that the established criterion can be 

optimized over the proper choice of the decision variables. The formulated optimal 

experimental problem invaluably lends itself to a combinatorial optimization problem 

which, in principle, can be solved by a mixed integer nonlinear programming 

algorithm (Yeh 1992).  

 

Steinberg and Hunter (1984) presented an extensive review of the classical criteria 

derived for linear statistical models. The most popular optimality criteria are: 

(i) D-Optimality: A design is said to be D-optimal if it minimizes the determinant of 

the covariance matrix of the estimated parameters. 

(ii) A-Optimality: A design is said to be A-optimal if it minimizes the trace of the 

covariance matrix of the estimated parameters. 

(iii) E-Optimality: A design is said to be E-optimal if it minimizes the maximal 

eigenvalue of the covariance matrix of the estimated parameters. 

(iv) G-Optimality: A design is said to be G-optimal if it minimizes max ( )d x , where 

( )d x  is the variance of the estimated response at x , and the maximum is taken over 

all possible vectors x of predictor variables. 

(v) I. -Optimality: A design is said to be I. -optimal if it minimizes ( ) ( )d d.� x x , 

where .  is a probability measure on the space of predictor variables. This criterion, 

also called average integrated variance, belongs to a more general class of L-

optimality criterion (Fedorov 1972).  Among the proposed design criteria, the A-

Optimality, D-Optimality and E-Optimality are the most widely used. 

 

The inherent difficulty in experiment design is that the designs are predicated on 
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unknown parameters which themselves are to be estimated. However, in practice, 

initial estimates of parameters are determined from prior information. Using the 

initial estimates, an optimal experimental design is carried out and data are collected 

accordingly. With the collected data, the inverse problem of parameter identification 

is solved to update the parameter values. If necessary, another round of experimental 

design can be carried out with the updated parameter values. This procedure is called 

sequential design. Its convergence property has been investigated by Nishikawa and 

Yeh (1989) and Cleveland and Yeh (1990).   

 

7.7.2 Experimental Design for Parameter Structure Identification 

 

Traditional experimental design methods, such as D-optimal design or the A-optimal 

design, do not consider whether the information provided by a design is sufficient. As 

a result, under-sampling or over-sampling frequently occurs. Chang et al. (2005) 

utilized the GIP and presented a methodology for observation network design aimed 

at finding a minimum cost design that provides sufficient information for identifying 

both the parameter structure and parameter values. Sequential Gaussian simulation 

was used to generate different realizations for the unknown distributed parameter. For 

each possible realization, the number of observation wells was increased gradually 

during the design process until the information provided by the design was sufficient. 

The selection criterion for locating a new observation well was the maximization of 

the information content for parameter identification. The overall sufficiency of a 

design was assessed by Monte Carlo simulation.  

 

To circumvent the need for initial estimates of parameters and a large number of 

Monte Carlo simulations, Sun and Yeh (2007b) proposed a robust experimental 

design procedure based on the worst-case parameter in the parameter admissible 

region. The worst-case parameter (WCP) is defined as one that requires the most 

information for its identification (Sun and Yeh 2007a). Therefore, if the data provided 

by a design are sufficient for identifying the WCP, then the design must be sufficient 

for identifying any other parameters with the same structure or a simplified structure. 

Sun and Yeh (2007b) presented the following procedure for constructing a 

sufficiency and robustness design D: 

 

Step 1. Compile all available prior information including the objectives of model 

application and their accuracy requirements.  

Step 2. Based on the prior information, estimate a structure A�  as the true structure 

and find its WCP, Ap� .  

Step 3. Run the simulation model to generate a set of “observation data” ( , )D A Au � p�  

according to the designed excitation strengths, observation locations and 

times. 

Step 4. Run the application model to generate a set of “application 

results” ( , )E A Ag � p� . 

Step 5. Generate a series of structures one by one and calculate the following fitting 

residual mRE and model application error mAE for each structure m� :  
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,

min ( , ) ( , )  
m m

m D A A D m m D
RE � �

� p
u � p u � p� ,   s.t.    ( )m mAd�p p  (7.69) 

 

  ( , ) ( , )m A A m m E
AE � �

E E
g � p g � p� �    (7.70) 

 

where m  is the parameter dimension; || ||E�  and || ||D�  are 2L norms defined in 

the objective space E and observation space D, respectively; ( )mAd p  is the 

admissible set of mp , and ( , )m m� p� is the solution of Equation (5.69).   

Step 6. If mAE > � and L* 2mRE , increase the parameter dimension m by 1 and 

repeat the above procedure to find 1m
� , where �  is the specified accuracy 

requirement and L  is the upper bound of the norm of observation error 

measured in the observation space. 

Step 7. When m increases, the value of mAE  will decrease and the value of mRE will 

decrease.  

 

Thus, finally we must arrive at one of the following three situations: (i) mAE <� but 

LJ 2mRE ;  (ii) mAE <� for all L2,mRE ; or (iii) mAE J  � but L, 2mRE .  If cases 

(i) and (ii) occur, we can conclude that the design is robust and sufficient. Otherwise, 

when case (iii) occurs, the design is insufficient. 

 

As mentioned before, a robust design is a conservative design. It provides the 

maximum information for identifying the most difficult parameter in the admissible 

parameter region. Based on the WCP, Sun and Yeh (2007b) proposed a heuristic 

design procedure for finding a robust but sub-optimal experimental design.  

 

 

7.8 Summary and Conclusions 
 

i. We can classify parameter structure identification into the extended inverse 

problem (EIP) and the generalized inverse problem (GIP). The EIP considers the 

identification of parameter structure (parameter dimension, parameter pattern, and 

parameter values) based on maximum likelihood estimation. The GIP broadens the 

EIP by incorporating model prediction or management along with the maximum 

likelihood estimation. Model discrimination and model selection criteria, including 

the parsimony principle, parameter uncertainty, structure error, prediction error and 

statistical information criteria, are introduced to determine the best parameter 

structure.  

 

ii. Parameterization is a necessary step to represent a distributed parameter (e.g., the 

hydraulic conductivity discussed in this chapter) for groundwater modeling and 

define parameter structure for parameter structure identification. We introduced a 

generalized parameterization (GP) method to integrate the zonation method and the 
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interpolation method to increase parameterization flexibility. This approach is 

important because a parameter estimate is not necessarily limited to a piece-wise 

constant or smooth distribution. Moreover, the GP method extends the traditional 

geostatistical framework to characterize spatially correlated parameters for stochastic 

inverse modeling.  

 

iii. Interpolation point selection plays an important role in parameter structure 

identification. We introduced the indicator generalized parameterization (IGP) to 

determine the selection of sample data points for interpolation. The IGP focuses on an 

unsampled location’s relevance to its neighboring sampled locations. This is more 

general than the traditional approach of focusing on the influential range of sample 

data on its neighboring locations where parameter value needs to be determined.  

 

iv. In contrast to model selection and model discrimination, we introduced Bayesian 

model averaging (BMA) to address the non-uniqueness of parameterization methods. 

Using a single parameterization method for parameter structure identification is likely 

to underestimate estimation uncertainty. Based on the law of total probability, the 

BMA weighs candidate models by the evidence of data. Then, the spatial statistics of 

an estimated parameter using multiple parameterization methods can be obtained by 

the BMA expectation and covariance.  

 

v. Experimental design complements the inverse theory. If the existing data are found 

to be insufficient for parameter structure identification, experimental design can be 

used to determine sampling strategies with the objective of reducing model 

uncertainty. We introduced several optimality criteria for optimizing experimental 

design for collecting informative data.   
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