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ABSTRACT 

The evaluation of climate change impact on hydrological cycle includes uncertainty. This 

study aimed to evaluate the uncertainty of climate change impact on the Zayandeh-Rud 

Reservoir inflow during the future 2020–2049 period. The outputs of 22 GCM models have been 

used under the three emission scenarios including RCP2.6, RCP4.5, and RCP8.5. The Bayesian 

model averaging (BMA) was used as the uncertainty analysis for weighting the outputs of 22 

GCM models (precipitation and temperature) based on their ability to simulate baseline 1980–
2005 period. Then the time series of equivalent precipitation and temperature were introduced to 

the hydrological model (i.e. IHACRES) and the output of runoff was estimated under different 

climate change scenarios. Results showed that different GCM models have different abilities in 

estimating climatic variables and the application of uncertainty analysis in climate change studies 

is necessary. The results showed that the winter stream flow will rise by 16 to 55% under 

different climate change scenarios. However, a reduction of (20–50)% is expected during spring 

months which complicated the regional water resource management during the following warm 

seasons. On the annual scale, the Zayandeh-Rud Reservoir’s Inflow will decrease (1–25)% under 

different emission scenarios which make the region more vulnerable to climate change than 

before. Therefore, adaptation strategies should be identified and some changes in Zayandeh-Rud 

Reservoir’s rule curve must be applied by water resource managers in the future. 
Key words: climate change, uncertainty analysis, Bayesian Model Averaging, Zayandeh-

Rud, Iran. 

1. INTRODUCTION 

Climate change is one of the most important challenges which will intensify the global 

hydrologic cycle and have various effects on hydro-climatic parameters around the world. The 

Zayandeh-Rud River Basin, as the most strategic river basin in the Central Iran, is not exempted 

from this phenomenon and assessment of climate change impacts on the river flow is considered 

crucial regarding water resources management of the basin. According to the socio-economic 

development and population growth, regional water resources managers have confronted with 

vital problems in order to satisfy the demand of various consumer sectors of the basin in the 

recent decades. Therefore, the evaluation of climate change impacts on hydro-climatic variables 

is crucial for future decisions in the case of regional water resources. Global Climate Models 

(GCMs) are considered as one of the most credible tools for future climate projections which is 

used by many of the climate change researchers; either used as a single model (Banihabib et al., 

https://www.civilenghub.com/ASCE/176764842/WEWRC-2020-Groundwater-Sustainability-Hydro-Climate-Climate-Change-and-Environmental-Engineering?src=spdf


World Environmental and Water Resources Congress 2020 168 

© ASCE 

2016; Goodarzi et al., 2015) or as a multi-model (Iizumi et al. 2009; Gohari et al. 2013; 

Ahmadalipour et al. 2018) for estimating meteorological parameters in different regions around 

the world. Whereas GCM models are considered as one of the sources of uncertainty in hydro-

climatic projections, in this article the Bayesian Model Averaging (BMA) approach is utilized to 

analyze the embedded uncertainty in GCM’s outputs and increase the level of confidence in the 

future climate change projections for policy makers. 

The Zayandeh-Rud Reservoir is the most important structure in the basin and the effects of 

climate change on the Zayandeh-Rud Reservoir Inflow plays a key role in meeting the needs of 

different consumer sectors in the downstream regions of the reservoir. This study aims to analyze 

the uncertainty of hydro-climatic models in estimating the Zayandeh-Rud Reservoir Inflow by 

using BMA approach. 

2. METHOD 

The upstream sub-basin of the Zayandeh-Rud Reservoir is known as the case study of this 

paper which is situated between 49° 54ʹ to 50° 45ʹlongitudes and 32° 18ʹ to 33° 12ʹ latitudes. The 
Kouhrang and Ghale-Shahrokh are selected respectively as synoptic and hydrometric stations. 

The monthly temperature and precipitation outputs of 22 GCM models in the fifth assessment 

report (AR5) of IPCC are used under the 3 emission scenarios (RCP2.6, RCP4.5 and RCP8.5) 

for climate change impacts assessment for the baseline (1980-2005) and future (2020-2049) 

periods. A general characteristics of selected stations and a brief description of the 22 GCM 

models are indicated in the Tables 1 and 2 respectively. 

Table 1. Main characteristics of the selected stations 

Station Parameter(s) Longitude Latitude Altitude (m) 

Kouhrang precipitation, temperature 50°   07ʹ 32°   27ʹ 2372 

Ghale-Shahrokh stream flow 50°   27ʹ 33°   39ʹ 2081 

2.1 Generation of climate change scenarios 

In order to develop climate change scenarios, the relative changes of precipitation and 

differences of temperature of each GCM model are calculated for each month by Equations 1 

and 2. 

 future

base

P
P

P
    (1) 

 future base
T T T     (2) 

where: 
future

T  and 
base

T  are the maximum and minimum temperature related to the future and 

baseline periods, respectively. In addition, the 
future

P  and base
P  are the values of rainfall for the 

future and historical periods, respectively. 

2.2 Downscaling GCM outputs and simulating runoff 

LARS-WG as one of the most well-known stochastic weather generators is here used for 

providing downscaled climatic variables. The observed time series of daily climatic data in 

historical period and generated climate change scenarios (∆T and ∆P) were used to produce the 

daily time series of climatic data in the future period (Semenov and Barrow, 2002). The 
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IHACRES model (Jakeman and Hornberger, 1993) is then used to simulate rainfall-runoff 

process in the basin. In order to assess climate change impacts, the time series of downscaled 

precipitation and temperature are introduced to calibrated IHACRES for estimating Zayandeh-

Rud Reservoir Inflow in the future. 

Table 2. Description of selected GCMs under IPCC’s Fifth Assessment Report (AR5) 

Model                        Developer Atmospheric 

Resolution (Lat. × 

Lon.) 

BCC-CSM1.1 Beijing Climate Center (China) 2.8° × 2.8° 

BCC-CSM1.1(m) Beijing Climate Center (China) 1.12° × 1.12° 

BNU-ESM College of Global Change and Earth System Science 

(China) 

2.8° × 2.8° 

CCSM4 National Center for Atmospheric Research (USA) 0.94° × 1.25° 

CESM1-CAM5 Community Earth System Model Contributors (USA) 0.94° × 1.25° 

CNRM-CM5 National Centre for Meteorological Research (France) 1.4° × 1.4° 

CanESM2 Canadian Centre for Climate Modelling and Analysis 

(Canada) 

2.8° × 2.8° 

EC-EARTH European Community Earth-System Model (Europe) 1.1° × 1.1° 

FGOALS-g2 LASG-CESS (China) 2.8° × 2.8° 

FIO-ESM First Institute  of  Oceanography (China) 2.8° × 2.8° 

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory (USA) 2.0° × 2.5° 

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory (USA) 2.0° × 2.5° 

GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory (USA) 2.0° × 2.5° 

GISS-E2-H National Aeronautics And Space Administration (USA) 2.0° × 2.5° 

GISS-E2-R National Aeronautics And Space Administration (USA) 2.0° × 2.5° 

HadGEM2-AO Met Office Hadley Centre (UK) 1.25° × 1.9° 

HadGEM2-ES Met Office Hadley Centre (UK) 1.25° × 1.9° 

IPSL-CM5A-MR Institut Pierre Simon Laplace (France) 1.25° × 2.5° 

MIROC5 MIROC (Japan) 1.4° × 1.4° 

MIROC-ESM MIROC (Japan) 2.8 ° × 2.8° 

MIROC-ESM-

CHEM 
MIROC (Japan) 2.8° × 2.8° 

MRI-CGCM3 Meteorological Research Institute (Japan) 1.1° × 1.1° 

2.3 Bayesian Model Averaging 

Bayesian Model Averaging is a statistical approach to integrate forecast probability densities 

predicted by individual models, in order to tackle model uncertainty and generate more reliable 
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PDF (Raftery et al., 2005). Regarding a variable y to be forecasted based on the k models (M1, 

M2,…, Mk) and the observed data in the training period Y, the law of total probability tells us that 

the projected PDF is given: 

 
1 2

1

( , ,..., , ) ( ) ( , )
k

i ik
i

P y M M M Y P M Y P y M Y


   (3) 

where, ( , )iP y M Y  is the predicted PDF of variable y given model i, which indicates the posterior 

distribution of variable y given by the model Mi. This posterior probability of each model being 

correct to estimate the observed data (Y) during the training period ( ( )iP M Y ) which reflects the 

performance of model i. Before application of BMA, a linear regression is utilized as the bias-

correction method and the original model projections in the time t (Mi
t) are replaced by the bias-

corrected forecast (fi
t) (Raftery et al., 2005); i.e. , 

 t t
i i i if a b M    (4) 

where, ai and bi are the coefficients of linear regression model and  fi
t is the bias-corrected 

forecast. In the next step, the Expectation–Maximization (EM) algorithm has been used in order 

to optimize the weights of posterior distribution until the gap between the observations and 

model’s forecasts converges to zero. The flowchart of EM algorithm is in Figure 1. 

 
Figure 1. The flowchart of EM algorithm 

where, Wi and 2
i  are the weight and variance of model i respectively; T is the number of 

observations in the training period; and z is the latent variable. 

3. RESULTS 

3. 1. Uncertainty Analysis of GCMs in hydro-climatic projection 

The Root Mean Square Error (RMSE) is here applied to compare the abilities of different 

global climate models (GCMs) and the BMA method to generate the observed hydro-climatic 

variables’ time series in the historical 1980-2005 period (Figures 2-4). According to Figure 2, 

most of the GCMs showed considerable errors in projection of the observed precipitation in 

winter and spring months. But, the BCC-CSM1.1(m), FGOALS-g2, GFDL-CM3 and MIROC5 
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had relatively better abilities to estimate rainfall values in cold seasons. Regarding temperature, 

the majority of the GCMs showed high RMSE values during the fall and winter seasons (Figure 

3). However, most of them showed better performance in warmer seasons including spring and 

summer months. GFDL-ESM2G, HadGEM2-AO, HadGEM2-ES and CESM1(CAM5) had 

better performance compared to other models in temperature prediction during the fall and 

winter months. 

 
Figure 2. RMSE values of GCMs’ outputs and BMA approach in simulating the observed 

precipitation during baseline period 

 
Figure 3. RMSE values of GCMs’ outputs and BMA approach in simulating the observed 

temperature during baseline period 

According to the Figures 2 and 3, some GCM models showed better abilities to estimate 

some climatic variables than the other ones. However, the application of BMA approach on the 

meteorological variables leads to better estimation of the observed values in the baseline period. 

Figure 4 shows the abilities of GCMs to generate the observed stream flow values during the 

baseline period. GCM models had minimum errors in estimating the observed runoff within the 

fall and winter seasons. However, most of the models revealed maximum RMSE in warm 

seasons especially of April and March. The FGOALS-g2, GFDL-CM3, GISS-E2-R and MRI-

CGCM3 models showed the higher performance in discharge prediction. The results show that 

the GCMs should be considered as one of the most important sources of uncertainty in climate 

https://www.civilenghub.com/ASCE/176764842/WEWRC-2020-Groundwater-Sustainability-Hydro-Climate-Climate-Change-and-Environmental-Engineering?src=spdf


World Environmental and Water Resources Congress 2020 172 

© ASCE 

change studies. The application of BMA can significantly reduce the errors in the historical 

period. Hence, it can be concluded that application of single GCM cannot lead to a reliable 

prediction of hydro-climatic projection. The results showed that application of BMA before 

preparing climatic data for hydrological model can significantly produce better simulated runoff. 

The performance of BMA approach in proving the reliable hydro-climatic estimations can be 

acceptable for different months. The ability of BMA in capturing the climate change impacts 

uncertainties on climatic variables as well as its acceptable performance in hydrological forecasts 

make it more appropriate for climate change studies. 

 
Figure 4. RMSE values of GCMs’ outputs and BMA approach in simulating the observed 

runoff during baseline period 

 
Figure 5. The PDF of annual temperature in the historical and future periods 

3.2. Climate change impacts on hydro-climatic variables 

The PDF of annual temperature and precipitation during the baseline and future (after 

application of BMA) periods are indicated in Figures 5 and 6. The average of annual temperature 

showed 0.5 to 1 oC increase under different climate change scenarios for the future (Figure 5). 

This increase in temperature can intensify the process of melting snows in the basin. 

Furthermore, the projected annual rainfall showed a reduction of 13 to 18 percent which will 
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negatively alter the stream flow in the future. An increase in the average temperature coupled 

with a decrease in rainfall will intensify the current water shortage in the basin. 

 
Figure 6. The PDF of annual precipitation in the historical and future periods 

 
Figure 7. Expected changes of runoff under different climate change scenarios after 

application of BMA in the futures. The horizontal dash lines shows no changes. 

Figure 7 shows the relative changes in stream flow under climate change scenarios for 

different months of the year. The winter stream flow rise by 16 to 55 % under different climate 

change scenarios. However, a reduction of (20-50) % is expected during the spring months 

which negatively affects the availability of water resources during the following warm seasons. 

The maximum decrease (62%) in stream flow is projected for November under RCP2.6. 

However, the stream flow of January will increase by 55% under RCP4.5. 

4. CONCLUSIONS 

In this study, the outputs of 22 GCMs are used under three emission scenarios to investigate 

https://www.civilenghub.com/ASCE/176764842/WEWRC-2020-Groundwater-Sustainability-Hydro-Climate-Climate-Change-and-Environmental-Engineering?src=spdf


World Environmental and Water Resources Congress 2020 174 

© ASCE 

the climate change impacts on the Zayandeh-Rud Reservoir Inflow for the future 2020-2049 

period. To increase the reliability of hydro-climatic projections, the Bayesian Model Averaging 

was utilized for climate change impact assessment. The results showed that the application of 

BMA approach on meteorological variables, including temperature and precipitation, leads to the 

better estimation of the observed values for all months in the baseline period. The results 

obtained from the Probability Density Function of precipitation revealed a reduction of (13-18) 

% in probabilistic peak of annual precipitation leading to some negative consequences in the 

availability of water resources in the study area. At annual scale, the temperature will increase 

(0.5-1) °C under different climate change scenarios. Furthermore, the Zayandeh-Rud Reservoir’s 
Inflow will decrease (1-25) % at annual scale under different climate change scenarios. These 

results comply with the findings of Gohari et al., 2014. However, a reduction of (20-50) % in 

spring runoff will push a significant pressure on water resources managers in order to satisfy the 

demands of various consumer sectors for the following warm seasons. The expected decreasing 

trend in runoff as well as the growing water demand, make the Zayandeh-Rud River Basin more 

vulnerable to climate change than before. Therefore, the adaptation strategies like modifying the 

Zayandeh-Rud Reservoir’s rule curve should be implemented to moderate the plausible negative 

impacts of climate change on water resources in the future. 
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