
  

distribution, the mean route travel time tk
w
, and the route travel time standard 

deviation σt,k
w
 can be expressed as: 

 

Tk
w
 ~ N(tk

w
, (σt,k

w
)
2
)  ∀w∈W, k∈Rw                              (7) 

tk
w = ΣaE(Ta)δa,k

w   (σt,k
w)2 = Σaδa,k

wVar(Ta)   ∀w∈W, k∈Rw         (8) 
 

Combining (4) and (5) give the expressions for tk
w
 and σt,k

w
 as the following: 
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2.2 Model of travel time budget 

As mentioned above, the travel time budget is the summation of the mean 

route travel time and the safety margin. It can also be expressed as: 
 

ck
w
 = tk

w
 + mk

w
  ∀w∈W, k∈Rw                                      (11) 

 

where ck
w is the travel time budget associated with route k between OD pair w and 

mk
w is the travel time safety margin determined by the following 

chance-constrained model: 

min ck
w
                                                        (12) 

s.t.  Pr[Tk
w
 ≤ ck

w
] ≥ ρ  ∀w∈W, k∈Rw                               (13) 

 

where ρ is the travel time reliability requirement. 

Since Tk
w follows a normal distribution, mk

w can be obtained by directly 

solving constraint (13). As a result, mk
w and ck

w can be expressed as: 
 

mk
w = σt,k

wΦ-1(ρ)   ck
w = tk

w + σt,k
wΦ-1(ρ)   ∀w∈W, k∈Rw              (14) 

 

where Φ(x) is the standard normal cumulative function of random variable x. 

3 SUE condition and variational inequality model formulation 

In general, since different travelers have different attitudes toward risk, it is 

unreasonable to assume that the travel time reliability requirement ρ is identical to 

all travelers in a real road network. Therefore, in this paper, the OD traffic demand 

qw between OD pair w is divided into I classes. The travel time reliability 

requirement ρ is identical in each user class i (∀i∈I) and the travelers belongs to 

different user classes will have different travel time reliability requirements. 

In a real road network, due to the complexity of network structure and a high 

degree of uncertainty in traffic conditions, travelers usually have partial 

information about the congestion status and the actual route travel time of the 

network. Therefore, it is necessary for a traveler to consider the perception error 
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when choosing a route. In this paper, a perceived travel time budget is introduced 

as follows: 
 

Ck,i
w
 = ck,i

w
 + ξk,i

w
   ∀w∈W, k∈Rw, i∈I                              (15) 

ck,i
w = tk

w + σt,k
wΦ-1(ρi)   ∀w∈W, k∈Rw, i∈I                          (16) 

 

where Ck,i
w, ck,i

w, ξk,i
w, and ρi are, respectively, the perceived travel time budget, 

the actual travel time budget, the perception error term of user class i on route k 

between OD pair w, and the travel time reliability requirement of user class i. It is 

assumed here that E[ξk,i
w] = 0 and therefore, E[Ck,i

w] = ck,i
w. 

In reality, the OD traffic demand may be influenced by level of service on the 

network (Sheffi 1985). To take this phenomenon into account, for each user class i, 

the OD traffic demand qw,i is assumed to be a strictly monotonic decreasing 

function with respect to the expected minimal perceived travel time budget. In 

other words, 
 

qw,i = Dw,i(Cw,i)   ∀w∈W, i∈I                                     (17) 
 

where Dw,i( ) and Cw,i are, respectively, the OD traffic demand function and the 

expected minimal perceived travel time budget of user class i between OD pair w. 

Cw,i can be computed by using the following equation. 
 

Cw,i (cw) = -lnΣk∈Rwexp(-θick,i
w)/ θi   ∀w∈W, i∈I                       (18) 

 

where parameter θi is a constant related to the perception error of travelers. 

We assume that the perception error terms on a traveler’s routes between OD 

pair w are independently and identically Gumble distributed. Therefore, the 

probability pk,i
w for travelers in user class i to choose route k from the set of routes 

between OD pair w is given by: 
 

pk,i
w = exp(-θick,i

w)/Σr exp(-θicr,i
w)   ∀w∈W, k∈Rw, i∈I                 (19) 

 

For travelers in each user class i ( Ii∈∀ ), the stochastic user equilibrium 

condition can be written as: 

fk,i
w
 = qw,i pk,i

w
   ∀ k∈Rw, w∈W, i∈I                                (20) 

 

where fk,i
w denotes the mean route flow of user class i on route k between OD pair 

w. 

We formulate the travel time budget-based stochastic user equilibrium traffic 

assignment model with multiple user classes and elastic demand as an equivalent 

variational inequality problem as follows. 

Find a mean route flow vector f*
 and an OD demand vector q

*∈Ψ, such that: 
 

( )( )( ) ( )( )
Ψ∈∀
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where the superscript “*” is used to designate the solution of the variational 

inequality problem; Dw,i
-1( ) denotes the inverse function of the OD traffic demand 

function; and Ψ is the feasible set for the mean route flows and OD demands 

determined by the following constraints. 
 

Σkfk,i
w
 = qw,i   ∀w∈W, i∈I                                        (22) 

fk,i
w
 ≥ 0      ∀ k∈Rw , w∈W, i∈I                                  (23) 

qw,i ≥ 0      ∀w∈W, i∈I                                         (24) 

ΣwΣkΣi fk,i
wδa,k

w
 = xa    ∀a∈A                                     (25) 

 

The proposed variational inequality problem can be solved by a number of 

route-based algorithms such as sequential quadratic programming or gradient 

projection methods etc. 

 

4 A numerical example 

The example network shown in Figure 1 includes six nodes, seven links, and 

one OD pair (from node 1 to node 6). Associated with each link are four numbers: 

the index, the free-flow travel time (h), the design capacity (pcu/h), and the worst 

degraded coefficient θa. The link performance function is given by Eq. (1) with α 

= 0.15 and β = 4. The following linear demand function is adopted. 
 

qi(Ci) = qi,max-500Ci                                              (26) 
 

where qi,max is the maximum (or potential) OD demand. For ease of exposition, it 

is assumed that there are only two user classes and their potential OD demand are 

set to be q1,max = 2500 pcu/h and q2,max = 2000 pcu/h. 

In this example, we first assume that the dispersion parameters for the two 

user classes are θ1 = 10; θ2 = 2. Then, we solve the proposed SUE model by using 

a route-based gradient projection algorithm under different combinations of the 

two user classes’ travel time reliability requirements ρ1 and ρ2. Table 1 depicts the 

corresponding results, which include the traffic flow on each route, the OD 

demand of each user class, and the travel time budget of each route for each user 

class at the equilibrium point. 
 

 
Figure 1. A six-node network for testing the proposed model 

 

Table 1 Equilibrium flow patterns of the travel time budget-based SUE model 

TDIBP 2008 171

https://www.civilenghub.com/ASCE/181646699/Transportation-and-Development-Innovative-Best-Practices-2008?src=spdf


  

ρi Route Link sequence Route flow c1(h) c2(h) q1 q2 

1 1-2-5 777 0.80 0.81 

2 1-4-7 1040 0.74 0.75 
ρ1=0.50 
ρ2=0.95 

3 3-6-7 2308 0.61 0.62 

2211 1914 

1 1-2-5 780 0.81 0.81 

2 1-4-7 1035 0.75 0.75 
ρ1=0.90 
ρ2=0.90 

3 3-6-7 2308 0.62 0.62 

2207 1915 

 

From Table 1, we can find that if the travel time reliability requirement 

increases, the OD demand will decrease and the corresponding route travel time 

budget will increase accordingly. 
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Abstract: In order to investigate the suitability and potential benefits of applying 

land-use forecasting models in China, this paper presents an immune genetic 

algorithm for the calibration of Lowry model based on a maximum likelihood 

approach. The calibration procedure comprises three stages. In the first stage, an 

immune genetic algorithm is employed to calibrate the population and 

employment potentials, together with a coefficient associated with the travel 

impedance function in the study area. The second stage investigates the 

relationship between the calibrated potentials and various land-use variables, 

using a multivariate stepwise regression analysis. The third stage is model 

validation. A case study of Hu Zhou city, in Zhe Jiang province of China, was 

employed to demonstrate the performance of the proposed methodology. The 

results indicate that the calibrated Lowry model is acceptable for forecasting the 

future population and employment distribution in China. 

Key words: Land-use and transportation; Lowry model; Calibration; Immune 

genetic algorithm 

 

1 Introduction 

Land use and transportation interaction is a dynamic process that involves 

changes over spatial and temporal dimensions between the two systems. Since the 

1960s, many theories and models have been used to study land use and 

transportation interaction (Waddell et al., 2006). The Lowry model (Lowry, 1964) 

has been widely used for this purpose. It was developed to simulate location 

patterns of residential and service activities. A maximum likelihood approach was 

employed to calibrate the Lowry model(Putman and Ducca, 1978).  

The maximum likelihood approach is a large-scale nonlinear optimization 

problem with a large number of variable and uncertain parameters. Recently, in 

order to get a better solution, the artificial intelligence methods, such as genetic 

algorithm (GA) (Wong, 1998), parallelized GA(Wong, 2001), neural networks 

(Rodrigue, 1997), etc, were proposed in many papers, and their promising 

performance was approved. But analyzing these methods, problem solutions are 

not very optimistic due to objections coming from these algorithms, e.g. local 

optimization solution, slow constringency speed etc. According to the 

disadvantages, this paper cites the theory of biological immune system (Huang, 
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1999), and constructs an immune genetic algorithm (IGA) to calibrate the Lowry 

model. 

The remainder of the article is organized as follows. Section 2 describes the 

structure of the maximum likelihood function to calibrate the Lowry model. IGA 

for the calibration process is given in section 3. A case study is presented in 

section 4, where modeling results are given and interpreted. Finally, section 5 

concludes the article with a brief summary and implications for further research. 

 

2 The Lowry Model 

The Lowry model uses three categories of activities: basic employment, 

service employment, and the household sector or residential population. Two 

spatial interaction functions form the basis of the Lowry model; the first 

distributes zonal employment to residences, and the second distributes service 

employment required by the residential population dependent on these employees. 

Beginning from an exogenously supplied distribution of basic employment, these 

interaction functions are used iteratively until no further increments to population 

are generated and a static equilibrium is achieved. 

The parameters used to predict the population and employment distributions 

can be specified with the vector format as follows: B=(βi, i=1,2,…,NP), WP=(wPik, 

i=1,2,…,NP, k=1,2,…,NZ) and WE=(wEjl, j=1,2,…,NE, l=1,2,…,NZ); and the results 

from the Lowry model as P=(Pik, i=1,2,…,NP, k=1,2,…,NZ) and E=(Ejl, 

j=1,2,…,NE, l=1,2,…,NZ). 

where  

1 1

1 1

exp( )

exp( )

E Z

P Z

N N

Pik i lk
ik jl N N

j l

Pik i lk

i k
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P E

w c

βα
β= =

= =

−
=

−
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1 1
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P Z
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jl ik N N
i k

Ejl i kl

j l
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E P
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β
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−
=

−
∑∑
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Pik and wPik are, respectively, the number of and housing potential for household 

of category i in zone k; Ejl and wEjl are, respectively, the number of and 

employment potential for employment of category j in zone l; NP, NE and NZ are, 

respectively, the number of household categories, employment categories and 

spatial zones in the study area; clk is the travel cost from zone l to zone k;βi is the 

travel impedance coefficient of household category i; α is the regional household 

to employment ratio. The household and employment potential are defined as 

measures of the relative zonal attractiveness to residents and employees, 

respectively, in the study area. These potentials state only the aggregate effects 

and it is believed that these attractions are contributed by the level of development 

or the land-use intensities of a zone. The above-mentioned procedures can be 

summarized by 

(P,E)= (B,W ,W )P EΓ          (1) 
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Let ikP and jkE  be respectively the observed population for population 

category i and observed employment for employment category j, at zone k. 

Assuming that the population or employment in a zone for a particular category is 

normally distributed around the results of the Lowry model. The probability of 

obtaining the observed values can be calculated as 

{ } 2 21
exp( ( ) 2 )

2
r ik ik ik ik Pik

Pik

P P P P P σ
σ π

= = − −

{ } 2 21
exp( ( ) 2 )

2
r jk jk jk jk Ejk

Ejk

P E E E E σ
σ π

= = − −  

Where 2

Pikσ and 2

Ejkσ  are respectively the variances of the observed population for 

population category i and observed employment for employment category j, at 

zone k. Further assuming that the occurrence of the observed values are 

independently distributed, the likelihood function L is 

2 2 2 2

1 1 1 1

1 1
exp( ( ) 2 ) exp( ( ) 2 )

2 2

P Z E ZN N N N

ik ik Pik jk jk Ejk

i k j kPik Ejk

L P P E Eσ σ
σ π σ π= = = =

= − − − −∏∏ ∏∏

 

The problem is solved by finding a set of parameters (B, WP, WE) such that 

the household and employment distribution obtained from the Lowry model as 

specified in equation (1) maximizes the objective function lnL, i.e. 

P E

22

2 2
B,W ,W

1 1 1 1

( )( )
ln

P Z E ZN N N N
jk jkik ik

i k j kPik Ejk

E EP P
Maximize L

σ σ= = = =

⎡ ⎤−−
= − +⎢ ⎥

⎢ ⎥⎣ ⎦
∑∑ ∑∑    (2) 

Subject to 

(P,E)= (B,W ,W )P EΓ  

3 Application IGA to Calibrate the Lowry Model 

Immune genetic algorithm (IGA) is put forward by adding the theory 

immune system to genetic algorithm in order to calibrate the Lowry model. IGA 

regards evolutional individuals as antibodies and objective function as antigens. 

With its ability of self-regulate， the antibody population achieves a good 

regulation of dynamic balance between individual diversity and population 

convergence after encountering foreign invading (Ma, 2006). Main processes 

using IGA to calibrate the Lowry model are followed as: 

Step 1  Generation the initial antibodies 

Gene coding adopts the decimal coding rather than binary coding. This 

method avoids the process of frequent coding and recoding, increases the speed 

and accuracy of calculation, and has advantage to solve the large-scale 

optimization problems. The control variables including the travel impedance 

coefficient B, the population potential WP and the employment potential WE are 

coded into antibodies. B adopts the real number code, while WP and WE adopt the 

integer code. The initial antibodies population of control variables is generated  
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randomly from the set of uniformly distributed control variables ranging over their 

upper and lower limits. 

Step 2  Calculation the affinities 

The affinity Abgw between antibodies and antigens is calculated as follows: 

[ ]( )bgwA fμ ν= . 

Where ( )f ν  is objective function, ( )xμ is the monotony function of x . Here, 

the negative of the reciprocal of objective function is used to express affinity: 

1

ln
bgwA

L
= − . 

Affinity between antibodies can reflect their analogical extent. In other words, 

a greater affinity value indicates a greater similarity between antibodies. The 

affinity between two antibodies w and v can be expressed by followed expression: 

, ,1 (1 )w v w vB H= + . 

Where Hw,v is Euclidean space between antibody w and v, and it can be calculated 

as follows: 

( )( ) ( ) ( ) ( ) ( ){ }
1

2

,

T T T

w v iw iv iw iv Piw Piv Piw Piv Eiw Eiv Eiw Eiv
H B B B B W W W W W W W W⎡ ⎤= − − + − − + − −⎣ ⎦∑

Where iwB , ivB , PiwW , PivW , EiwW , EivW are values of the ith item of antibody w and v. 

Step 3  Calculation the density of antibodies 

The density of antibody w , cw can be defined as 
,

1

N

w w v

v

c B N
=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑ .Where 

N is the number of antibodies. According to their corresponding densities, 

antibodies are ranked in ascending order, and the antibodies with great density are 

eliminated by the abandoning rate. The new ones by random generation are 

substituted for the eliminating antibodies. Suppressing the high density antibodies 

can greatly keep the diversity of population, and avoid trapping into the local 

optimal solution. 

Step 4  Selection calculation 

The selection operation is executed with the rank method, while adopting the 

rank method, the fitness of antibody is only decided by its order in the population 

rather than by its actual value of the objective function. The fitness of antibody w 

is composed of two sections: the affinity Abgw and the density cw, that is,  

(1 )bgw wp A cα α= + − . 

Where α  is a proportional factor, 0<α <1. The selecting operation can retain the 

antibodies with the small affinity to antigen by activating and suppressing based 

on the densities of antibodies, which can ensure the diversity of population and 

improve the convergence near the optimal solution. 

Step 5  Crossover and mutation 

The antibodies with smaller fitness have higher probability to be selected by 

the rank method, and to carry out the crossover and mutation operation. The 

crossover operator adopts the middle recombination suitable for the real variables, 
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after crossover, the antibodies possess a good distribution. The mutation operation 

adopts the even real number mutation. 

Step 6  Judging the conditions of end 

If the number of end generation of evolution is arrived and the average 

density of antibodies is stable, then the program is ended, else goes back to step 2. 

 

4 Numerical Analysis of Example 

Hu Zhou city, in Zhe Jiang province of China, is used as a case to 

demonstrate the performance of the IGA. The travel characteristics survey (TCS) 

was carried out by Southeast University to provide information for transportation 

planning in 2004. It consists mainly of a large scale home interview survey to 

collect information on household, personal and trip characteristics. Some land use 

data are measured from the outline zoning plans for the present study. 

Using MATLAB6.5 toolbox, two kinds of algorithm are performed. The first 

is simple genetic algorithm (SGA) with only the GA operators and the second is 

IGA adding the immune operators. The city is divided into 32 zones. The number 

of unknowns is 65. In the IGA, the size of population is 100 and the mutation rate 

is set as 1/500,000. The crossover rate is 0.8 and the maximum number of 

generation is taken as 1000. The fitness function proportional factorα is set as 

0.98. Fig.1 shows the evolving curves of the SGA vs. IGA. It is apparent that the 

proposed method is superior to the SGA. 
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Fig. 1. Evolving curves of SGA vs. IGA 

By minimizing the discrepancy between the observed and modeled 

distributions of population and employment, a set of zonal population potential 

and employment potential are obtained. They are set as dependent variables and a 

set of ten types of land use data are set as independent variables in the stepwise 

regression analysis. The coefficient of determination, R
2
, is employed as a 

statistical measure for the assessment. Table 1 summarizes some performance 

index. It was observed that very high R
2
 were obtained in IGA. The resulting 

potentials are reliable and able to replicate the base year conditions. It is shows 

that the Lowry model can be applied to forecast future distributions of population 

and employment based on different land use zoning policies. 
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Table 1 calibration results of the Lowry model 

 Population  R
2
 Employment  R

2
 Travel impedance coef. β 

SGA 0.778 0.753 5.75×10
-4

 

IGA 0.929 0.899 9.03×10
-4

 

 

5 Conclusions 

A novel algorithm, immune genetic algorithm (IGA), is proposed to calibrate 

the Lowry model, which can be applied to forecast future population and 

employment distribution. IGA, compared with SGA, possesses a better global 

convergence and a quicker calculation speed. The results indicate that the 

calibrated Lowry model is acceptable for forecasting the future population and 

employment distribution due to different land-use planning and policy schemes, as 

well as changes in transportation systems. 
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