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et al. 1992; Wise and Charbeneau 1994) . Note that the averaging in (5.52 ) is over

the realizations o f travel time at a certain point in #rspace, and not over the deter-

ministic measure of travel time T(JC X) itself. That is, the average in the right-hand side

of (5.52) is exactly the streamtube (or streamfilament) ensemble average, as is dem-

onstrated o n substitution o f (5.57):

Returning to a discrete ensemble of streamtubes as might be generated by means of

deterministic simulation, each indexed with subscript i [i.e., each with a correspond-

ing travel- time functio n T^)], then the expectation takes the for m o f a sum over

solutions C(it, t),  where T f i s the value of the function T^) evaluated a t a certain

point jCj . These solutions ar e weighted b y their corresponding travel-time frequen -

cies, as in

Here p(\, t) is the discrete probability for the occurrence of Tk = \ at x  ̂that is, 

relative flux contribution o f streamtubes with average travel time T fe.

Note also that the travel-time distribution functio n may be recast as a distribu-

tion over any relevant integrable space. One useful example is seen when the stream-

tubes all emanate from points a within a source domain A—in this case, streamtubes

(or streamfilaments, associating them with the differential s withi n the integration)

may be counted o f a given travel time by indexing their particular start location a

with the Dirac-8 function as in:

This for m will be used i n the later section, Travel-Time Distribution Functio n

Estimation, to relate the conventional Lagrangian stochastic-analytic representation

of the streamtube ensembl e a s indexed b y starting location a  to th e general flu x

accounting by equation (5.53) . For instance, downstream breakthrough mass flux of

mixed solutes emanating from start locations a in \ can be written in terms o

elemental area l water flux at the start location q x = ev^aJdA^ times the volumetric

mass density of the solute emanating from a  downstream, integrated over A .̂ This is

done by parameterizing travel time on start location a , via T(a) (Dagan et al. 1992):

https://www.civilenghub.com/ASCE/182159931/Stochastic-Methods-in-Subsurface-Contaminant-Hydrology?src=spdf


198 Stochasti c Methods in Subsurface Contaminant Hydrology

where T(a) is the travel time for solute mass originating at a. The travel-time argu-

ment may now be formally expanded toward (5.60) by introducing the Dirac-8 gen-

eralized function to collocate elements da with the same travel-time value T,

rotating the order of integration,

combining the velocity and porosity for the flux g(a

which for unit initial flux by (5.60) is simply

Therefore, by means of the generalized ensemble averaging operator defined in (5.60),

the averaging of ensemble concentrations can be related by essentially any parameter-

ization of travel time back to the form involving a relative flux distribution p.

Convolution Forms:  Use  and Limitations

Travel time defined in (5.18) determines the mapping of the variable velocity along a

streamtube ont o a n equivalen t (constant ) velocit y fiel d fo r a n equivalent one-

dimensional system with distance coordinate xv Therefore, the travel-time distribu-

tion p is experimentally observed as the conservative tracer breakthrough curve at the

control plan e at xl i n response to a  unit Dirac-8 input o f inert tracer. Alternatively,

the distribution functio n may be deconvolved fro m the observed response to other

input functions of inert tracers, a s variously described i n Rainwater et al. (1987) ,

Wise and Charbeneau (1994), Ginn et al. (1995), and Skaggs et al. (1998), by means

of the exploitation o f the linearity of the flux-averaging, when the boundary condi-

tions are known. Linearity allows solutions for arbitrary input functions c0 to be rep-
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resented a s convolutions o f the solution to the Dirac-8 solution, by means of the

superposition principle. That is, the single streamfilament (or dispersionless stream-

tube) breakthrough curve response to any positive input of inert tracer c0(t0) ca n be

written as the convolution

and the n deconvolution techniques ma y be applied t o estimate p  fro m observed

breakthrough c y with knowledge of the boundary condition c0. For instance, if c0 is a

unit-concentration pulse of unit duration, (5.66) becomes

which can be rearranged and differentiated to write a simple (but not robust) recur-

sive deconvolution involving differentiation o f cy (Ginn et al. 1995):

This form fail s to discriminate the causes of travel-time distribution, that is, convec-

tive difference s betwee n streamtube s versu s diffusive/dispersive mixin g withi n

streamtubes. This issue will be returned to in the section, Travel-Time Distribution

Function Estimation.

An alternate approach is used in Wise and Charbeneau (1994) and Rainwater et

al. (1987), where streamtube ensemble transport conveying solutes from an injec -

tion well to a  production wel l i s associated wit h th e measured cumulative iner t

breakthrough (termed there the "fractiona l breakthrough," which is the integral of

our travel-time distribution function) .

Convolution relations can be developed using the principl e of superposition

that allows the expression of breakthrough curve (flux-averaged) concentrations for

inert solute transport arising from steady or transient (se e Streamtube Invariance:

Use and Limitations) flow fields, involving both initial distributions of solute (initial

value problems) or boundary injections of solutes (boundary value problems). Such

solutions for inert or passive tracer transport appear as transfer function solutions in

terms of convolutions between the inpu t distribution an d the travel-time distribu-

tion function (Raats 1975, 1978; Simmons 1982; Jury and Roth 1990).

However, the convolution representation, although convenient, i s not intrinsi-

cally require d i n th e streamtub e averaging, an d i n fac t i s a n overl y restrictive

approach t o dealin g with multicomponen t and/o r nonlinea r solute interactions.

Because the convolution representation requires the solution o f the reactive trans-

port model in the one-dimensional /th-streamtube c/
fe

(t, T) to be stationary in the dif-
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ference t  - T ; that is, because it requires cf(t, T ) to be expressible as cf(t -  T) , it pre-

vents incorporatio n o f mos t realisti c (i n particular , nonstationary ) kineti c

transformation processes, includin g (purely physical) longitudinal diffusion/disper -

sion, along a streamtube. The general integral form (5.65) allows treatment of multi-

component, nonlinea r interactions as well as the incorporation of mixing longitudi-

nally within streamtubes.

Streamtube Invariance: Use  and Limitations

The solution o f the streamtub e system (5.52 ) representing breakthrough curves of

reacting solutes requires the determination of the ful l surfac e Cj fe(t,T) for component k

in streamtube /. In the discrete streamtube case, (5.59) requires calculation of each of

the surfaces (^(T ift) fo r each realization of travel-time function T^). In the case of

the availabilit y of canonical solutions (Gin n et al . 1995) , thi s i s accomplished b y

simply rescaling the travel-time axis of the canonical solution C(T, t) to the indicated

TJ(JC). However, in many cases, canonical solutions are not available, and on e needs

to solve for ^(i, t ) over a real finite ensemble of one-dimensional streamtubes. This

is in general much more tractable a computation tha n solving the ful l three-dimen -

sional reactive transport model, and a demonstration calculation is shown in the sec-

tion, A Computational Example, using the example from the Introduction .

The accuracy of the representation will depend partly on the level of approxima-

tion involved in the use of the CVE to express (^(x lf f)  a s ^(T, t), which in turn relies

on the validity of the streamtube invariance conditions underlying the CVE. General

streamtube invariance issues were discussed previously in Streamtube Ensemble For-

mulation. However, for analysis of streamtube invariance requirements in particular

cases, it is instructive to revisit the formulatio n for the simple case of coupled reactive

transport in one dimensio n involving a single mobile and single immobile compo-

nent. Consider a purely convective transport in a nonunifor m velocity v(s) alon g the

streamtube coordinate s(x), with reaction terms explicitly dependent on space, time,

and solute concentration. This template fit s various nonequilibrium sorption, decay,

precipitation, biodegradation , an d multidomai n mas s transfe r processes. The gov-

erning differentia l equation s for this single streamtube model (without yet invoking

the CVE) ar e

Details of methods for analytical solution to variations o f such systems are given in

Lassey (1988), Toride et al. (1993), Simmons e t al. (1995), and Gin n et al. (1995)

among other articles. Here, this representative reactive transport system i s investi-

gated to identif y streamtube invariance conditions required fo r the applicability of

the simple average given in (5.52).
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Next, the conditions required for representing the solutions to this system in the

time and travel time space are sought, and the streamtube invariance of such solu-

tions are studied. Also considered in turn are the cases where information propagates

from the time boundary (boundar y value problems) and from the space boundary

(initial value problems) as per Simmons et al. (1995). A case involving mixed bound-

ary conditions, where one reactant is initially uniformly distributed along the spatial

coordinate and another along the temporal, is discussed in Ginn et al. (1995).

Boundary value problems. When the boundar y condition i s Dirichlet on the time

ordinate, that is,

the system (5.69 ) and (5.70 ) is a boundary value problem. Perform th e change of

variables

for T  e [0, T] and x e [0 , jcj, defining a travel-time function as usual as

and under the assumption of positive v, the inverse function determining position is

* = £(T;0) (5.73 )

which gives position x as a function of T , measured fro m th e origin. In the simple

case where the velocity does happen to be uniform within the streamtube, then i(x;

0) =  x/v an d £(T ; 0) =  ire. Equatio n (5.71) may be used to convert the system to th e

time and travel-time space as follows:
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The system (5.74) and (5.75) then provides a formulation dictating a solution c(i, t)

entirely a s a  functio n o f tim e an d trave l time. Th e boundar y conditions i n thi s

boundary value problem ar e independent o f any streamtube-specific velocity-based

function, and so are invariant with streamtube. However, the reactions term requires

the generally streamtube-specific inverse travel-time function, ^(i; 0), to express the

position dependence of the rate of reaction; this renders the governing equation, and

thus the solution, streamtub e variant, because the rates of reaction depend o n th e

velocity nonuniformit y through ^(T; 0),where the subscript /  denotes streamtub e / .

Therefore, whe n th e reactio n term s involv e spatia l dependence , th e solutio n i s

dependent o n the particula r velocity nonuniformity . In this case the solution fo r a

given /^ streamtube may be denoted wit h label /  as c(l , i, t), an d any flux-averagin g

of the streamtube contributions fro m the ensemble must be done with regard to not

only the distributio n o f travel time but als o the distributio n o f inverse travel time

functions ^/(i; 0) contributing flux given a particular T. That is the averaging defined

in (5.52) must be recast as

where cg is a pre-averaged concentration weighted by the relative occurrence of fluxes

corresponding to streamtubes /  within the sub-ensemble of streamtubes with travel

time T:

Put another way, the streamtube invariance conditions for the use of the averaging in

(5.52) are that the reaction terms and boundary conditions be streamtube invariant,

which here means they must not depend o n the nonunifor m velocity function char-

acterizing convective transport along a streamtube.

Initial value problems. I n the initia l valu e specification, the boundar y condition

data usually takes the form of Dirichlet condition along the space coordinate; that is,

as before, with travel time defined as in (5.72) , including the particular case

Again do the change of variable
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and the same inverse function determining position (5.73), including the particular case

which gives position x0 as a function of TO, measured from the origin. The new system is

constructed as in the boundary value case, but with the initial values converted as well:

For instance, in the constant velocity case, the initial condition becomes

Therefore, a s in the case of the boundar y value problem, it is seen that the solution

to this system with nonunifor m velocity may be cast in the tim e an d travel time

space. However, it can only be used in the averaging scheme of (5.52) if the reaction

rates an d initia l distribution o f reactant ar e invariant with th e inverse travel-time

functional; 0).

In summary, the Streamtube invariance conditions for allowing the use of aver-

aging in (5.52) are that the reactions term and boundary conditions be independent

of the inverse travel-time function use d to identif y spatia l coordinate. When these

conditions ar e satisfied, th e solution &(t,  T ) is invariant with the particula r form of

the nonunifor m velocity function involved in the governing differentia l equations ,

as long as the travel time for that velocity function, when evaluated at xlf yield s the

value T. This means that any velocity function v(x) satisfyin g

at a specified observation location x l ca n be used in getting the solution to the gov-

erning system, including the constant velocity v(x) =  U = JCJ/T. That is, the Streamtube

solutions can be calculated using a CVE of representative streamtubes.
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There are some cases that defy description by means of the CVE used here. These

include the case of colloid or bacterial transport when aqueous- and solid-phase par-

titioning i s governed by filtration theory (Rajagopala n an d Tien 1976) so that th e

reaction rat e i s linea r i n porewate r velocit y v,  th e low-Pecle t cas e wher e error s

involved i n the approximate representation o f dispersion/diffusio n ma y be impor-

tant, and the case of nonuniform initial distribution o f solid-phase reactant.

Chemical/Biologic Heterogeneity  in  Immobile Species

It was noted previousl y that the streamtub e invarianc e conditions requir e amon g

other things uniformity of the initial distribution of immobile and mobile reactants.

Evolving nonuniformit y in reactants along a streamtube poses no difficult y a s this is

captured i n the differentia l equatio n governing reactive transport within a  stream-

tube; however, the general case of arbitrary initial geochemical heterogeneity compli-

cates the calculations. If appreciable heterogeneity appears in the initial distribution

of solid-phase reactants, then the solute response will depend o n particular stream-

tube index /  as well as independent travel time, thus breaking streamtube invariance

and makin g it necessary to characterize Eulerean geochemical propertie s (e.g., z )

along each streamtube and to incorporate thi s information in the reactive transport

solution. Thi s additiona l burde n i s avoidable unde r som e condition s a s demon -

strated b y a  simplified example, involving the case where z i s factorable into on e

function tha t represents spatio-temporal dependencies and another that reflects th e

multicomponent dependencies. The overall approach is to treat reactivity as velocity

has been treated and to replace it with a cumulative reactivity in the streamtube solu-

tion. Doing so allows one to introduce an effective constant reactive rate and thus to

divide up th e streamtub e corresponding to a  particular travel time into a  series of

conditional streamtubes covering a range of reactivities. In this case, one may intro-

duce the distributio n o f flux over not onl y travel time, bu t als o over reactivity, as

depicted in Figure 5-4, which is simply a two-dimensional probabilistic extension of

Figure 5-3 . Condition s fo r whic h thi s ma y b e achieved ar e no t ye t full y known ,

because the existence of a constant reactivity ensemble depends to some degree on

the form of the reactions and the nature of the initial nonuniformit y in solid-phase

properties.

For this reason, the simple case of a single mobile reactive species and how it is

affected b y chemical heterogeneity in the solid phase will be considered.

Factorable kinetic forms. I n many cases, heterogeneity i n the reaction term z ;(x, t ,

c) appears multiplicatively through a  space-time weight function z^x, t) , which for

simplicity will be taken as independent o f time, and an often nonlinea r kinetic rate

modulation term h(c), such as (for the simplifie d case)

where z° i s the spatially nonunifor m reactivity function representin g the effect s o f

geochemical heterogeneity an d where the kinetic term h  represents modulatio n of
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Figure 5-4. Constant velocity Streamtube ensemble of Figure 5-3, depicted now with distri-

bution of flux over not only travel time T, but also effective constant reactivity p. Conceptual

distribution is shown in section for given T over p.

the reaction to some order in aqueous species c. This form is generally representative

of single-species heterogeneous-reaction (e.g., aqueous solid phase) kinetics includ-

ing biodegradation with negligible growth, kinetic sorption o f arbitrary order, and

colloid filtration, among others. Incorporating (5.86) into the Streamtube equation

before commitment to the CVE (for generality),

gives

For simplicity ignoring dispersive/diffusive flux, and then executing the conversion

to trave l time fo r thi s particula r streamtube's velocity functio n V x(jc) [e.g. , fro m

(5.42)], makes from (5.88):
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where £/ ° is defined as (/th streamtube dependent) reactivity function tha t includes

all terms in the sum in (5.88) and is in terms of time and travel time, and in terms of

index /. The index may alternately be introduced in a continuous measure. In either

case, th e streamtub e dependence (e.g., streamtube variance as opposed t o invari -

ance) of (5.89) on /  requires one to condition the solution on / , and so the solution

to (5.89) is denoted as C/(T, t). Within this notation, the solution can be expressed in

terms o f it s analytical for m accordin g to th e metho d o f characteristics approach

(Ginn et al. 1995) . Consideration of the characteristics of the first-order partia l dif-

ferential equatio n (5.89 ) gives rise t o a  pai r o f ordinar y differentia l equation s

describing the transport trajectory and the change in solute concentrations along that

trajectory respectively:

and subsequently the second along the path described by the first gives, for the com-

bined result, the formal integral solution

where the penultimate step is obtained by using the path in (5.91) and the last step

defines the cumulative reactivity Z°(i) o f streamtube / in terms of travel time alone.

Representing th e left-han d sid e using integral notation a s F(c;  c 0) =  F(c(t;  t 0)) -

F(c0(t0)), (5.92 ) can be expressed as the implici t relation, giving c as a function of

travel time and of boundary concentration c 0. The dependence on time is implicit in

the dependence of c0 on t 0 where t0 involves t by its restriction to obey (5.84). That is,

the solution C/(T , t) is given in the for m

The method of characteristics approach i s here essentially a  separation of vari-

ables that has allowed one to functionally separate cumulative reactivity as an inte-

gral in travel time alone. In the form given by (5.93), just as in the case of a constant

velocity representation for travel time discussed in the section, Streamtube Ensemble

Formulation, the integral over the /th streamtube dependent reactivity (before it was

the /t h streamtube dependent reciprocal velocity) is equally given by any reaction

function Q ° that yields the sam e cumulative reactivity Z/°(T) fo r a  particular travel

time T (before it was a cumulative travel time for a particular jt-coordinate x^. Notice

Integrating the first to obtain the path
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