
 

• number of conductors = 2 

The assumed sag during stringing was approximately 25 ft (7.6 m).  The calculation 

of tension required to hold one span is made using Equation (F.1) from Annex F 

(IEEE, 2003). 

(F.1)    ଵܶ = ௐమ଼  

Where:   

T1 = tension to support one span  

W = weight per unit length of conductor  

L = span length  

D = sag during stringing  

 

Substituting the known information, the tension to support one span is: 

(F.1)    ଵܶ = ଵ.ଷଵ଼௦ ௧	ൗ (଼௧)మ଼(ଶହ௧) =  (ܰ݇	18.16)	ݏܾ݈	4082

 

This matches closely with the reported stringing tension at the puller being 

approximately 4000 lbs (17.9 kN).  Equation (F.2) calculates the maximum tension 

required to pull the conductor over N number of supports (IEEE, 2003). 

(F.2)   ܶ௫ = భ்.ଽ଼ಿ 

Where:   

Tmax = tension to pull conductor  

0.98 = assumed efficiency at each traveler  

N = number of supports  

 

The maximum tension during stringing becomes: 

(F.2)   ܶ௫ = ସ଼ଶ	௦.ଽ଼భళ = ݏܾ݈	5755 (ܰ݇	25.60)	ݏܾ݈	5755 × ݏݎݐܿݑ݀݊ܿ	2 = (ܰ݇	51.20)	ݏܾ݈	11510  

 

The estimated longitudinal load at failure above is greater than the calculated 

capacity of the final arm design but less than the tested tower body capacity. The arm 

performed as expected.   
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CONCLUSION AND RECOMMENDATIONS 

 

 The limiting longitudinal unbalanced load criterion is unique in that it is 

designing for failure.  Strength calculations from governing codes are conservative to 

ensure a safe design is achieved.  Failure prediction is complex and requires structure 

testing to determine the actual failure limit.  Structure testing also exposes any 

incorrect assumptions made during design and provides data that can be used to 

finalize or improve the design.    

A tension side failure may be a possible alternative to unpredictable buckling 

failures.  A tension failure using either a slip critical release connection or a fuse 

element made of a material with predictable capacity limits are two possibilities.  

However, further research and testing is needed to determine if they are viable 

solutions.   

This paper has shown how the “limiting” longitudinal unbalanced load 

criterion was successfully applied throughout the design, testing, and construction of 

a new 138 kV tangent tower.  The use of this criterion has lessened the major damage 

to CenterPoint Energy’s lattice transmission towers whether during catastrophic 

events or everyday line construction.    
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ABSTRACT 

 

The Electric Transmission Texas/Competitive Renewable Energy Zone 

(ETT/CREZ) project consists of seven 345kV transmission line segments with a total 

length of over 400 miles.  The project is located in North Central Texas.  The 

transmission line consists of tubular steel poles supported by two types of 

foundations.  The poles will be either direct embedded with a concrete backfill for the 

more lightly loaded tangent pole structures; or drilled shafts with full length anchor 

bolts for the more heavily loaded tangent, running angle and dead end structures.   

  

Over 2,400 or about 90% of the total number of structures will be direct 

embedded with concrete backfill.  In the past, AEP Foundation Design Engineers, as 

well as most of the utility industry, traditionally assumed that a direct embedded pole 

behaves the same as a reinforced concrete drilled pier, however no full-scale 

foundation load tests have ever been performed to confirm this assumption.  Due to 

the large number of direct embedded foundations to be installed, a tremendous 

opportunity for construction savings existed, even if only one foot of embedment 

were saved on average for each installation.   

 

To seize this opportunity, the engineering team decided to conduct two full-

scale direct embedded pole tests.  The primary goal was to reduce foundation 

construction costs, while maintaining reliability.  This was accomplished by 

performing preliminary direct embedment depth calculations using MFAD and test 

site-specific soil data, installing the test poles to the calculated embedment depths, 

and subsequently conducting the load testing.  The resulting field-measured load-
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displacement responses were then analyzed and compared with the original design 

assumptions and methodology.  Adjustments were made to the design approach as 

appropriate, and used in the final designs for all direct embedded foundations. 

 

As a result of the testing program, the engineering team was able to realize a 

reduction in embedment depths ranging from one to four feet, which will have a 

beneficial impact on foundations costs.  Furthermore, the knowledge obtained from 

the tests allowed the team to confirm the design approach and thus improve the 

reliability of future, direct embedded pole designs. 

 

INTRODUCTION 

 

The single pole foundations, supporting the proposed ETT/CREZ 345kV 

lines, will be mainly direct embedded with concrete backfill.   

 

In an effort to establish the range of embedment depths, a parametric study 

was conducted.  This study was based on preliminary foundation loads and boring 

information taken close to the proposed line route and in similar geologic formations.  

Using this boring information, these preliminary designs resulted in embedment 

depths of 19 to 24 feet for the lightest loaded tangent poles.  Since over 2,400 or 

about 90% of the total structures will be direct embedded, the foundation construction 

costs for these structures will represent a sizeable portion of overall foundation 

construction costs.  Combining this information with the fact that no full-scale 

foundation load test data was available concerning the behavior of direct embedded 

poles with concrete backfill, the AEP design team decided to conduct two full-scale 

load tests.  The goal of these tests was to reduce foundation construction costs while 

maintaining reliability, and to confirm the foundation design approach and the 

response to loads of direct embedded poles with concrete backfill.  

 

  Plans called for performing one test near the Riley Substation and a second 

test near the Tesla Substation.  The two test sites are approximately 57 miles apart. 

The Riley Substation is located in Oklaunion, Wilbarger County, Texas.  The test 

pole was located outside the substation at approximately Elevation 1240 on relatively 

flat terrain.  Tesla Substation is located in Kirkland, Childress County, Texas.  The 

test pole was located outside the substation at approximately Elevation 1730 on a 

rolling plain.  

 

SUBSURFACE CONDITIONS AT THE TEST SITE 

 

A boring at the Riley Substation test site showed the presence of mostly stiff 

to very stiff brown-red clay with some mottled gypsum fragments from the ground 

surface to a depth of about nine feet.  Underlying the stiff to very stiff clay to the 

bottom of the test foundation at 19 feet was mostly hard to very hard, brittle, silty clay 

with some gypsum and claystone fragments.  Ground water was located at a depth of 

23 feet in the boring after drilling activities were complete.   
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