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vector V = (V1, . . . , VmV
). Consequently, the Rm-valued random vector U

can be written as

U = h(V), U
obs = h

obs(V), U
nobs = h

nobs(V), (8.2)

in which v �→ h(v) = (hobs(v),h
nobs(v)) is a deterministic nonlinear trans-

formation from RmV into Rm = Rmobs × Rmnobs which can be constructed
solving the discretized boundary value problem.

(3) Experimental data sets

It is assumed that νexp experimental data sets are available for the ob-

servation vector U
obs. Each experimental data set corresponds to par-

tial experimental data (only the trace of the displacement field on Γobs

is observed) with a limited length (νexp is relatively small). These νexp ex-
perimental data sets correspond to measurements of νexp experimental
configurations associated with the same boundary value problem. For
configuration 
, with 
 = 1, . . . , νexp, the observation vector (correspond-

ing to U
obs for the computational model) is denoted by uexp,� and be-

longs to Rm. Therefore, the available data are made up of the νexp vectors
uexp,1, . . . ,uexp,νexp in Rm. Below, it is assumed that uexp,1, . . . ,uexp,νexp can
be viewed as νexp independent realizations of a random vector U

exp de-
fined on a probability space (Θexp, T exp,Pexp) and corresponding to ran-
dom observation vector U

obs (but noting that random vectors U
exp and

U
obs are not defined on the same probability space).

(4) Stochastic inverse problem to be solved

The problem to be solved concerns the identification of the unknown
non-Gaussian random vector V representing the spatial discretization of
fourth-order tensor-valued random field {C(x), x ∈ Ω}. Such an identi-
fication is carried out using partial and limited experimental data uexp,1,
. . . , uexp,νexp relative to the random observation vector U

obs such that
U

obs = h
obs(V) in which h

obs is a given deterministic nonlinear mapping.

The components of the random vector U
nobs, such that U

nobs = h
nobs(V) in

which h
nobs is a given deterministic nonlinear mapping, are not used for

the identification but will be used for performing the quality assessment
of the identification .
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8.2 Construction of a family of prior algebraic

probability models (PAPM) for the

tensor-valued random Þeld in elasticity

theory

The notations introduced in Section 8.1 are used. We are interested in
constructing a family of prior algebraic probability models (PAPM) for
the non-Gaussian fourth-order tensor-valued random field {C(x), x ∈ Ω}
defined on a probability space (Θ, T ,P), in which C(x) = {Cijk�(x)}ijk�.

8.2.1 Construction of the tensor-valued random Þeld C

The mean value {C(x), x ∈ Ω} of random field {C(x), x ∈ Ω} is assumed
to be given (this mean value can also be considered as unknown in the
context of the inverse problem for the identification of the model param-
eters as proposed in Step 2 of Section 8.3). It is a deterministic tensor-
valued field x �→ {Cijkh(x)}ijkh such that

E{Cijkh(x)} = Cijkh(x), ∀x ∈ Ω, (8.3)

where E is the mathematical expectation. For instance, in the con-
text of the linear elasticity of a heterogeneous microstructure, tensor-
valued function C would be chosen as the mean model of a random
anisotropic elastic microstructure at the mesoscale. It should be noted
that the known symmetries, such as orthotropic symmetry or transver-
sally isotropic symmetry, can be taken into account with the mean model
represented by tensor {Cijkh(x)}ijkh. Nevertheless, in Section 8.2, the
random fluctuations {Cijkh(x) − Cijkh(x)}ijkh around the mean tensor-
valued field will be assumed to be purely anisotropic, without any
symmetries. For instance, probability models for the elasticity tensor-
valued random field with uncertain material symmetries are analyzed in
(Guilleminot and Soize 2010). Below, we present an extension of the the-
ory developed in (Soize 2006; 2008b). The family of prior tensor-valued
random field C(x) is then constructed as

C(x) = C0(x) + C(x).

The deterministic tensor-valued field C0(x) = {C0
ijkh(x)}ijkh will be

called the ”deterministic lower-bound tensor-valued field” which will
be symmetric and positive definite. The tensor-valued random field
C(x) = Cijkh(x)}ijkh defined by C(x) = C(x) − C0(x) will be called
the ”fluctuations tensor-valued random field”. This tensor will be almost
surely symmetric and positive-definite. Tensor-valued field C0(x) should

https://www.civilenghub.com/ASCE/183682428/Stochastic-Models-of-Uncertainties-in-Computational-Mechanics?src=spdf


Stochastic Models of Uncertainties in Computational Mechanics 61

be such that the mean value C(x) = E{C(x)} = C(x)−C0(x) is symmet-
ric and positive definite. Below, we present the entire construction and
we give the corresponding main mathematical properties.

(i)- Mathematical notations. In order to study the mathematical proper-
ties of the tensor-valued random field C(x), we introduce the real Hilbert
space H = {u = (u1, u2, u3) , uj ∈ L2(Ω) } equipped with the inner
product

<u , v>H=

∫

Ω

<u(x) , v(x)> dx,

and with the associated norm ‖u‖H =< u ,u >
1/2
H , in which <

u(x) , v(x) > = u1(x)v1(x) + u2(x)v2(x) + u3(x)v3(x) and where L2(Ω)
denotes the set of all the square integrable functions from Ω into R. Let
V ⊂ H be the real Hilbert space representing the set of admissible dis-
placement fields with values in R3 such that

V = {u ∈ H , ∂u/∂x1 , ∂u/∂x2 , ∂u/∂x3 in H , u = 0 on Γ0},

equipped with the inner product

<u , v>V =<u , v>H + <
∂u

∂xj
,
∂v

∂xj
>H

and with the associated norm ‖u‖V =< u ,u >
1/2
V . The convention of

summation over repeated latin indices is used. Let L2(Θ,V) be the space
of all the second-order random variable U = {U(x), x ∈ Ω} defined on
(Θ, T ,P) with values in V , equipped with the inner product

� U,V 
= E{<U ,V>V}

and the associated norm |||U||| =� U,U 
1/2. For all U in L2(Θ,V), we
then have

|||U|||2 = E{‖U‖2V} < +∞.

Finally, the operator norm ‖T‖ of any fourth-order tensor T = {Tijkh}ijkh
is defined by ‖T‖ = sup‖z‖F≤1 ‖T :z‖F in which z = {zkh}kh is a second-

order tensor such that ‖z‖2F = zkh zkh and where {T :z}ij = Tijkhzkh.

(ii)- Mean tensor-valued field C(x). We introduce the deterministic bilin-
ear form c(u, v) related to the mean tensor-valued field C ,

c(u, v) =

∫

Ω

Cijkh(x) εkh(u) εij(v) dx, (8.4)
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in which the second-order strain tensor {εkh}kh is such that

εkh(u) =
1

2

(
∂uk

∂xh
+

∂uh

∂xk

)
.

For all x, the fourth-order real tensor C(x) = {Cijhk(x)}ijhk of the elastic
coefficients verifies the usual property of symmetry

Cijkh(x) = Cjikh(x) = Cijhk(x) = Ckhij(x), (8.5)

and for all symmetric second-order real tensor z = {zkh}kh, tensor C(x)
verifies the following property,

b0 zkh zkh ≤ Cijkh(x)zkhzij ≤ b1 zkh zkh, (8.6)

in which b0 and b1 are deterministic positive constants which are inde-
pendent of x. Taking into account Eqs. (8.5) and (8.6), it can be deduced
that bilinear form c(u, v) is symmetric, positive-definite, continuous on
V × V and is elliptic on V , that is to say, is such that

c(u,u) ≥ k0 ‖u‖2V . (8.7)

Equation (8.7) can easily be proven using Eq. (8.4), Eq. (8.6) and the Korn
inequality which is written as

∫
Ω εkh(u) εkh(u) dx ≥ b2 ‖u‖2V . It can then

be deduced that k0 = b0 b2 is a positive constant.

(iii)- Deterministic lower-bound tensor-valued field C0(x). The deter-
ministic lower-bound tensor-valued field {C0(x), x ∈ Ω} is a given deter-
ministic field which is introduced to guaranty the ellipticity condition of
the tensor-valued random field C(x). We will give two examples for the
construction of C0(x). The fourth-order real tensor C0

ijkh(x) must verify
the usual property of symmetry (similarly to Eq. (8.5)) and for all sym-
metric second-order real tensor {zkh}kh must be such that

b00 zkh zkh ≤ C0
ijkh(x)zkh zij ≤ b01 zkh zkh, ∀x ∈ Ω, (8.8)

in which b00 and b01 are deterministic positive constants which are inde-
pendent of x. Let C(x) be the tensor-valued deterministic field defined
by

C(x) = C(x)− C0(x), ∀x ∈ Ω. (8.9)

In addition, tensor-valued field C0 must be constructed for that, for all x,
tensor C(x), which verifies the symmetry property (see Eq. (8.5)), must be
positive definite, that is to say, for all non zero symmetric second-order
real tensor {zkh}kh, must be such that

Cijkh(x) zkh zij > 0, ∀x ∈ Ω. (8.10)
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From Eqs. (8.9), (8.6) and (8.8), it can easily be deduced that

Cijkh(x) zkh zij ≤ b11 zkh zkh, ∀x ∈ Ω, (8.11)

in which b11 = b1 − b00 > 0 is a positive finite constant independent of x.
Introducing the deterministic bilinear form c0(u, v) related to the deter-
ministic lower-bound tensor-valued field C0(x),

c
0(u, v) =

∫

Ω

C0
ijkh(x) εkh(u) εij(v) dx, (8.12)

it can be shown, as previously, that this bilinear form is symmetric,
positive-definite, continuous on V × V and is elliptic on V , that is to say,
is such that

c
0(u,u) ≥ k00 ‖u‖2V , (8.13)

in which k00 = b00 b2 is a positive constant.

Example 1. In certain cases, a deterministic lower bound Cmin inde-
pendent of x can be constructed for a given microstructure (Guilleminot
et al. 2011). The fourth-order tensor Cmin is symmetric and positive defi-
nite. For all x in Ω, we then have C0(x) = Cmin.

Example 2. If there is no available information to construct the deter-
ministic lower-bound tensor-valued field {C0(x), x ∈ Ω}, we can define
it as C0(x) = ε0 C(x) in which 0 < ε0 < 1 can be chosen as small as one
wants. With such a choice, we have C(x) = (1− ε0)C(x).

(iv)- Random fluctuations tensor-valued field C(x). The random fluctu-
ations tensor-valued field {C(x), x ∈ Ω} is defined on probability space
(Θ, T ,P). In (Soize 2006; 2008b), the random fluctuations tensor-valued
field {C(x), x ∈ Ω} is constructed in order that all the following proper-
ties listed below be verified.
For all x fixed in Ω, the fourth-order real tensor Cijkh(x) is symmetric,

Cijkh(x) = Cjikh(x) = Cijhk(x) = Ckhij(x), (8.14)

and is positive definite, that is to say, for all non zero symmetric second-
order real tensor {zkh}kh, we have,

Cijkh(x) zkh zij > 0. (8.15)

The mean function of random field {C(x), x ∈ Ω} is equal to the tensor-
valued deterministic field {C(x), x ∈ Ω} defined by Eq. (8.9),

E{C(x)} = C(x), ∀x ∈ Ω. (8.16)
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Let c(U,V) be the random bilinear form defined by

c(U,V) =

∫

Ω

Cijkh(x) εkh(U) εij(V) dx. (8.17)

The available information used to construct the random field C implies
(see (Soize 2006)) that the bilinear form (U,V) �→ E{c(U,V)} is symmet-
ric, positive definite, continuous on L2(Θ,V) × L2(Θ,V), is not elliptic
but is such that, for all U in L2(Θ,V), we have

√
E{c(U,U)2} ≥ k1 E{‖U‖2V}, (8.18)

in which k1 is a positive constant. Equation (8.18) implies that the fol-
lowing elliptic boundary value problem E{c(U,V)} = E{f(V)} for all
V in L2(Θ,V), in which f(v) is a given continuous linear form on V , has
a unique random solution U in L2(Θ,V), but the random solution U is
not a continuous function of the parameters.

(v)- Prior algebraic probability model (PAPM) for the tensor-valued
random field C(x). The non-Gaussian fourth-order tensor-valued ran-
dom field {C(x), x ∈ Ω} is defined on probability space (Θ, T ,P) and
such that, for all x in Ω,

C(x) = C0(x) + C(x), ∀x ∈ Ω, (8.19)

in which the deterministic lower-bound tensor-valued field {C0(x), x ∈
Ω} is defined in (iii) and where the random fluctuations tensor-valued
field {C(x), x ∈ Ω} is defined in (iv). Let c(U,V) be the random bilinear
form defined by

c(U,V) =

∫

Ω

Cijkh(x) εkh(U) εij(V) dx, (8.20)

and let c(U,V) be the bilinear form defined by

c(U,V) = E{c(U,V)}. (8.21)

Then, it can easily be verified that the bilinear form c(U,V) is symmetric,
positive-definite, continuous on L2(Θ,V) × L2(Θ,V) and is elliptic, that
is to say, for all U in L2(Θ,V), we have

c(U,U) ≥ k00 |||U|||2. (8.22)

Equation (8.22) implies that the following elliptic boundary value prob-
lem E{c(U,V)} = E{f(V)} for all V in L2(Θ,V), in which f(v) is a given
continuous linear form on V , has a unique random solution U in L2(Θ,V)
and the random solution U is a continuous function of the parameters.
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8.2.2 Construction of the tensor-valued random Þeld C

In this section, we summarize the construction of random field {C(x), x ∈
Ω} whose available information and properties have been defined in Sec-
tion 8.2.1-(iv) and for which the details of this construction can be found
in (Soize 2008b) and (Soize 2006). For all x fixed in I = {x1, . . . , xNp} ⊂ Ω,
the fourth-order tensor-valued random variable C(x) is represented by a
real random matrix [A(x)]. Let I and J be the new indices belonging to
{1, . . . , 6} such that I = (i, j) and J = (k, h) with the following corre-
spondence: 1 = (1, 1), 2 = (2, 2), 3 = (3, 3), 4 = (1, 2), 5 = (1, 3) and
6 = (2, 3). Thus, for all x in Ω, the random (6 × 6) real matrix [A(x)] is
such that

[A(x)]IJ = Cijkh(x), x ∈ Ω. (8.23)

For all x fixed in Ω, due to the symmetry and positive-definiteness prop-
erties (defined by Eqs. (8.14) and (8.15)) of the random fourth-order ten-
sor C(x), it can be deduced that [A(x)] is a random variable with values in
the set M

+
6 (R) of all the (6× 6) real symmetric positive-definite matrices.

The M
+
6 (R)-valued random field {[A(x)], x ∈ Ω}, indexed by Ω, defined

on the probability space (Θ, T ,P), is constituted of 6 × (6 + 1)/2 = 21
mutually dependent real-valued random fields defining the fourth-order
tensor-valued random field C indexed by Ω. Let x �→ [a(x)] be the ran-
dom field from Ω into M

+
6 (R) defined by

[a(x)]IJ = Cijkh(x), x ∈ Ω, (8.24)

in which the random field x �→ C(x) is defined by Eq. (8.9). Consequently,
the mean function of random field [A] is such that

E{[A(x)]} = [a(x)], x ∈ Ω. (8.25)

Since [a(x)] belongs to M
+
6 (R), there is an upper triangular invertible ma-

trix [L(x)] in M6(R) (the set of all the (6 × 6) real matrices) such that

[a(x)] = [L(x)]T [L(x)], x ∈ Ω. (8.26)

From Eq. (8.11), x �→ [a(x)] is a bounded function on Ω and it can then be
assumed that x �→ [L(x)] is also bounded function on Ω. For all x fixed in
Ω, the random matrix [A(x)] can be written as

[A(x)] = [L(x)]T [G0(x)] [L(x)], (8.27)

in which x �→ [G0(x)] is a random field defined on (Θ, T ,P), indexed by
R3, with values in M

+
6 (R), such that for all x in R3

E{[G0(x)]} = [ I6], (8.28)
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in which [ I6] is the unity matrix. The random field [G0] is completely
defined below.

(i)- Probability model of the random field [G0]. The random field x �→
[G0(x)] is constructed as a homogeneous and normalized non-Gauss-
ian positive-definite matrix-valued random field, defined on probability
space (Θ, T ,P), indexed by R3, with values in M

+
6 (R). This random field

is constructed as a non-linear mapping of 21 independent second-order
centered homogeneous Gaussian random fields x �→ Ujj′ (x), 1 ≤ j ≤
j′ ≤ 6, defined on probability space (Θ, T ,P), indexed by R3, with val-
ues in R, and named the stochastic germs of the non-Gaussian random
field [G0].

(i.1)- Random fields Ujj′ as the stochastic germs of the random field [G0].
The stochastic germs are constituted of 21 independent second-order
centered homogeneous Gaussian random fields x �→ Ujj′ (x), 1 ≤ j ≤
j′ ≤ 6, defined on probability space (Θ, T ,P), indexed by R3, with val-
ues in R and such that

E{Ujj′(x)} = 0, E{Ujj′(x)
2} = 1. (8.29)

Consequently, all these random fields are completely and uniquely
defined by the 21 autocorrelation functions RUjj′

(ζ) = E{Ujj′ (x +

ζ)Ujj′ (x)} defined for all ζ = (ζ1, ζ2, ζ3) in R3 and such that RUjj′
(0) = 1.

In order to obtain a class having a reasonable number of parameters,

these autocorrelation functions are written as RUjj′
(ζ) = ρjj

′

1 (ζ1) ×
ρjj

′

2 (ζ2) × ρjj
′

3 (ζ3) in which, for all k = 1, 2, 3, one has ρjj
′

k (0) = 1 and
for all ηk �= 0,

Eρjj
′

k (ζk) = 4(Ljj′

k )2/(π2ζ2k) sin2
(
πζk/(2L

jj′

k )
)
. (8.30)

in which Ljj′

1 , Ljj′

2 , Ljj′

3 are positive real numbers. Each random field Ujj′

is then mean-square continuous on R3 and it power spectral measure has

a compact support. Such a model has 63 real parameters Ljj′

1 , Ljj′

2 , Ljj′

3

for 1 ≤ j ≤ j′ ≤ 6 which represent the spatial correlation lengths of the
stochastic germs Ujj′ .

(i.2)- Defining an adapted family of functions. The construction of the
random field [G0] requires the introduction of an adapted family of func-
tions {u �→ h(α, u)}α>0 in which α is a positive real number. Function
u �→ h(α, u), from R into ]0 ,+∞[, is introduced such that Γα = h(α,U)
is a gamma random variable with parameter α while U is a normalized
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Gaussian random variable (E{U} = 0 and E{U2} = 1). Consequently,
for all u in R, one has

h(α, u) = F−1
Γα

(FU (u)), (8.31)

in which u �→ FU (u) =
∫ u

−∞
1√
2π

e−v dv is the cumulative distribution

function of the normalized Gaussian random variable U . The function
p �→ F−1

Γα
(p) from ]0 , 1[ into ]0 ,+∞[ is the reciprocal function of the

cumulative distribution function γ �→ FΓα
(γ) =

∫ γ

0
1

Γ(α) t
α−1 e−t dt of

the gamma random variable Γα with parameter α in which Γ(α) is the

gamma function defined by Γ(α) =
∫ +∞
0

tα−1 e−t dt.

(i.3)- Defining the random field [G0]. For all x fixed in Ω, the available
information defined by Eqs. (8.23) to (8.28), lead us to choose the random
matrix [G0(x)] in ensemble SG+

0 defined in Section 2.5.2. Taking into ac-
count the properties defined in Section 2.5-(1), (2) and (3), the correlation
spatial structure of random field x �→ [G0(x)] is then introduced in re-
placing the Gaussian random variables Ujj′ by the Gaussian real-valued
random fields {Ujj′(x), x ∈ R3} defined in Section 8.2.2-(i.1), for which
the correlation spatial structure is defined by a spatial correlation lengths

Ljj′

k . Consequently, the random field x �→ [G0(x)], defined on probability
space (Θ, T ,P), indexed by R3, with values in M

+
6 (R) is constructed as

follows:
(1) Let {Ujj′ (x), x ∈ R3}1≤j≤j′≤6 be the 21 independent random fields
introduced in Section 8.2.2-(i.1). Consequently, for all x in R3,

E{Ujj′ (x)} = 0, E{Ujj′ (x)
2} = 1, 1 ≤ j ≤ j′ ≤ 6. (8.32)

(2) Let δ be the real number, independent of x, such that

0 < δ <
√
7/11 < 1. (8.33)

This parameter which is assumed to be known (resulting, for instance,
from an experimental identification solving an inverse problem) allows
the statistical fluctuations (dispersion) of the random field [G0] to be con-
trolled.
(3) For all x in R3, the random matrix [G0(x)] is written as

[G0(x)] = [L(x)]T [L(x)], (8.34)

in which [L(x)] is the upper (6×6) real triangular random matrix defined
(see Section 2.5.2) as follows:
� For 1 ≤ j ≤ j′ ≤ 6, the 21 random fields x �→ [L(x)]jj′ are independent.
� For j < j′, the real-valued random field x �→ [L(x)]jj′ , indexed by R3,
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is defined by [L(x)]jj′ = σ Ujj′ (x) in which σ is such that σ = δ/
√
7.

� For j = j′, the positive-valued random field x �→ [L(x)]jj , indexed by

R3, is defined by [L(x)]jj = σ
√
2 h(αj, Ujj(x)) in which αj = 7/(2δ2) +

(1− j)/2.

(i.4)- A few basic properties of the random field [G0]. The random field
x �→ [G0(x)], defined in Section 8.2.2-(i.3), is a homogeneous second-
order mean-square continuous random field indexed by R3 with values
in M

+
6 (R) and its trajectories are almost surely continuous on R3. For all

x ∈ R3, one has

E{‖G0(x)‖2F } < +∞, E{[G0(x)]} = [ I6]. (8.35)

It can be proven that the newly introduced parameter δ corresponds to
the following definition

δ =

{
1

6
E{‖ [G0(x)]− [ I6] ‖2F}

}1/2

, (8.36)

which shows that
E{‖G0(x) ‖2F } = 6 (δ2 + 1), (8.37)

in which δ is independent of x. For all x fixed in R3, the probability den-

sity function with respect to the measure d̃G = 215/2 Π1≤j≤k≤6 d[G]jk
of random matrix [G0(x)] is independent of x and is written (see Sec-
tion 2.5.2 with n = 6) as

p[G0(x)]([G])= 1
M

+
6 (R)([G]) × CG0 ×

(
det [G]

)7 (1−δ2)

2δ2 × exp

{
− 7

2δ2
tr [G]

}
,

(8.38)
where the positive constant CG0

is defined in Section 2.5.2 with n = 6. For
all x fixed in R

3, Eq. (8.38) shows that the random variables {[G0(x)]jk,
1 ≤ j ≤ k ≤ 6} are mutually dependent. In addition, the system of
the marginal probability distributions of the random field x �→ [G0(x)] is
completely defined and is not Gaussian. There exists a positive constant
bG independent of x, but depending on δ, such that for all x ∈ R3,

E{‖[G0(x)]
−1‖2} ≤ bG < +∞. (8.39)

Since [G0(x)] is a random matrix with values in M
+
6 (R), then [G0(x)]

−1

exists (almost surely). However, since almost sure convergence does not
imply mean-square convergence, the previous result cannot simply be
deduced. Let Ω = Ω ∪ ∂Ω be the closure of the bounded set Ω. We then
have

E
{
(sup

x∈Ω

‖ [G0(x)]
−1‖)2

}
= c2G < +∞. (8.40)
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