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(Siebert and Teizer, 2014) and measurement (Wang, X et al., 2017), and 3D model creation (Xie 

et al., 2012). 

However, despite overall growing popularity within the domain of Civil Engineering, the 

utilization of the UAS and photogrammetry technologies in construction is still at an early stage. 

Little research has been conducted from a pragmatic perspective to evaluate the effectiveness of 

this emerging technology due to practical issues such as local regulations, limited resource of test 

fields, or strict flight conditions. Therefore, this work aims to conduct a quantitative analysis to 

evaluate the influence of important UAS flight parameters and site conditions on measurement 

accuracy. According to practical experience and existing literature, flight altitude, image 

overlapping rate, GCPs, and soil type are key factors during the operation of UAS and modeling 

quality control (Sibert and Teizer, 2014; Mesas-Carrascosa et al., 2016; Nassar and Jung, 2012). 

The goal of this project is to compare the positional accuracy of points when applying different 

factor parameters in order to identify the effectiveness of each factor and interactions among 

them, thereby providing a practical reference for managers and engineers to allow for efficient 

application of UAS and photogrammetry in construction projects. 

INFLUENTIAL FACTORS 

One of the most important flight parameters during UAS operations is the flight altitude. It 

not only determines the relative size of the pixels of an image, but also the flight durations and 

the area to be covered (Christiansen et al., 2017). To be more specific, the flight altitude is 

related to the Ground Sampling Distance (GSD). GSD is the distance between two consecutive 

pixel centers measured on the ground. The larger the value of GSD, the lower the spatial 

resolution of the image and the lower visibility of the details. In selecting flight altitude, it is 

essential to consider the balance between the spatial resolution and area covered. Higher spatial 

resolution will contribute to image quality but may result in prolonged flight duration. 

Another crucial factor is the overlapping rate between images. Photogrammetry is a 

technology of image processing to interpret the shape and location of an object from one or more 

photographs of that object. It aims to reconstruct an object from two-dimensional (2D) graphic 

form to three-dimensional (3D) form. The shape and position of an object are determined by 

reconstructing bundles of light rays which define the spatial direction of the ray to the 

corresponding object point. From the intersection of at least two corresponding and separated 

rays, an object point can be located in 3D space. Therefore, image processing is based on 

automatically finding thousands of common points between images. Each characteristic point in 

an image is called a key-point. When two key-points, from two different images captured at 

different locations, are found to be the same, they will match together. When there is high 

overlap between images, the camera on the UAS is able to capture a larger common area to 

generate more matched key-points and thus improve the computational accuracy. 

For the use in surveying application, an absolute accuracy test is mandatory. The quality of 

the 3D model depends on the number of images and manual tie points. The use of Ground 

Control Points (GCPs) is an effective method to improve accuracy. GCPs are points with known 

coordinates measured by highly accurate GPS units in the area of interest. The photogrammetry 

software is able to process projects with or without geo-locations, but accurate GCPs improve 

the global accuracy of the project. GCPs will give the scales, orientations, and positions to the 

final results (Wang, J. et al., 2012). Therefore, the number of GCPs and their distribution are 

important to control the modeling quality and accuracy of measurements. 

Lastly, the material of the mapping surface also has great impact on the quality of models 
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during the image processing. A 3D image is a non-contact measurement method applied to 

produce a 3D representation of a physical object (Furukawa and Ponce 2010). The point cloud 

model is the major output of image processing through photogrammetry. A point cloud is 

composed of a set of vertices used to represent the external surface of objects in a 3D coordinate 

system. The photogrammetry software generates a point cloud model through measuring a large 

number of points on the surface of an object (Nassar and Jung 2012). Therefore, the different 

surface material of an object may affect the modelling quality at various levels. 

 
Figure 1. Grid Flight Pattern over the Study Area 

METHODOLOGY 

The UAS used for image acquisition in this study was the DJI Inspire 1. This UAS is a 

vertical takeoff and landing aircraft powered by a 22.2V battery (See Figure 1). Its system has a 

maximum takeoff weight of 7.71lbs and maximum wind resistance of up to 10m/s. The 

maximum flight duration is approximately 18 minutes. The UAS is equipped with a 1/2.3 inch 

CMOS sensor with a 20mm lens, and the stock camera has 4096 × 2160 resolution for still 

images (DJI 2018). During operation, the UAS autopilot sends a signal to the equipped sensor to 

capture a photo while, simultaneously, recording the geo-referencing information, such as 

location and navigation angles, which can be used for post-processing on an SD card. The study 

area was 163×247 ft in size and located at Coldstream Dairy Research Farm Complex in 

Lexington, Kentucky. 

Multiple flights were conducted following the scheme presented in Figure 1. This flight plan 

is compatible with different flight altitudes, image overlapping rates, and the use of GCPs. A set 

of flight missions were performed at altitudes of 60, 90, 120 and 150 ft. Due to the height of wire 

poles on the farm, it was dangerous to fly the UAS lower than 60ft. For each altitude level, the 

UAS captured photos based on two different forward and side overlapping rates respectively: 

40%-70% and 60%-90%. All the flight missions followed the grid pattern because this study 

aimed to perform mapping over an area with large size rather than modeling a vertical object 

(See Figure 1). In addition, flight missions were performed under the same weather conditions, 
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especially wind speed. In this study, Pix4Dmapper photogrammetry software was selected to 

process images and generate 3D point cloud and DSM models of the study area. Afterward, 

images captured by each flight were processed with and without GCPs. The coordinates of GCPs 

were measured by an EPOCH 50 GNSS Rover. A total of 16 GCPs were measured and spaced 

evenly across the area of interest to minimize the errors in scale and orientation. 

Table 1. RMSE (ft) of Flights Processed by Different Number of GCPs 
Flight 

Altitude 

(ft) 

Image 

Overlapping 

Rate (%) 

No 

GCPs 

1 

GCPs 

4 

GCPs 

8 

GCPs 

12 

GCPs 

16 

GCPs 

60 70%-40% 4.09 4.08 0.92 0.78 0.55 0.52 

90%-60% 5.35 4.25 0.29 0.28 0.28 0.28 

90 70%-40% 4.99 4.55 0.81 0.70 0.64 0.50 

 90%-60% 3.31 3.31 0.32 0.29 0.28 0.28 

120 70%-40% 3.12 3.19 0.60 0.60 0.50 0.43 

 90%-60% 6.85 5.74 0.50 0.45 0.31 0.29 

150 70%-40% 3.49 3.65 0.64 0.57 0.38 0.38 

 90%-60% 2.91 2.89 0.51 0.48 0.30 0.31 

RESULTS AND DISCUSSIONS 

The major output of image processing was a point cloud model. The accuracy of the position 

of each point directly contributed to the linear or volumetric measurements. To be more specific, 

the positional absolute accuracy was the indicator or measure of how a spatial object was 

accurately positioned on the map with respect to its true position on the ground, within an 

absolute reference frame – such as UTM coordinate system (Küng et al., 2011). The 16 GCPs 

perform as checkpoints to be used for measurement of positional accuracy, no matter how many 

GCPs are used for processing. In this study, the positional accuracy of points was evaluated by 

Root Mean Square Error (RMSE). (Luhmann, Thomas, et al. 2014, Siebert and Teizer, 2014). 

The CPU and memory specifications of the desktop used for analysis are as follows, Intel(R) 

Core(TM) i7-4790 CPU @ 3.60GHz, with 32GB of RAM. The operating system was Windows 

7 Professional, 64-bit, and the photogrammetry platform was Pix4Dmapper Pro. 

Table 1 shows the RMSE of each point with varying numbers of GCPs applied at multiple 

flight altitudes and image overlapping rates. It can be observed that the errors significantly 

decrease when all GCPs were used for processing because the GCPs provide an accurate 

orientation of the coordinates reference system. Also, the results show random RMSE behavior 

when no GCPs were used due to the lack of geometric constraints on the aerial-triangulation 

computation. This behavior seems to be independent of flight heights and image overlapping 

rates. With the image overlapping settings, the results indicate higher overlapping rates result in 

smaller errors when applying all GCPs regardless of flight altitudes. However, as the flight 

altitude increases, the errors decrease in magnitude if there is a lower overlapping rate. 
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According to observations of the collected data, lower flight altitude with higher image 

overlapping rate and the use of GCPs results in better positional accuracy. A multiple regression 

analysis was used to verify the results based on the observations. According to the results (See 

Figure 2), the use of GCPs is a statistically significant predictor because its p-value of t-test is 

smaller than 0.05. 

 
Figure 2. Estimations of the Independent Variables Significance 

In this study, the effect of soil type on the volumetric measurement accuracy was tested by 

modeling four samples composed of different soil types. The four soil types were sand, clay, fine 

grade gravel, and coarse grade gravel. The actual volumes of samples were based on the 

standards measured by the manufacture. All samples were piled in similar shapes under the same 

weather and illumination conditions (See Figure 3). 

 
Figure 3. Sample Piles of Different Soil Types 

As seen in Table 2, the results indicated that the measured volume of clay had the smallest 

error. In addition, as the soil granularity increased and as the color of material became lighter, 

the accuracy of measurement decreased. The reason may be that coarser surface textures created 

more visual noise on the surfaces of the models and light-colored and glossy surfaces tended to 

saturate images leading to difficulties in visual interpretation. 

CONCLUSION 

This study aimed to investigate how important flight parameters of the UAS and 

environmental factors impacted measurement accuracy through experimental flights and 

statistical analysis of positional errors computed through photogrammetry technologies. 

After detailed comparisons and analysis for each flight plan, one can derive that the 

combination of low flight altitudes, high image overlapping rate, the use of a proper number of 
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GCPs and modeling surface of clay soil type can maximize the measurement accuracy. The 

positional errors become much smaller when more than 1 GCP are used for processing because 

GCPs provide an accurate orientation of the coordinate reference system. This behavior is 

independent of flight heights and image overlapping rates. With the image overlapping and flight 

altitude settings, however, higher overlapping rates result in larger errors as the flight altitude 

increases, and the errors decrease if selecting the low overlapping rate. This tendency did not 

change when a different number of GCPs were applied. Although GCPs were the most 

influential factor, based on the results of multiple regression analysis, it does not mean an 

unlimited number of GCPs would be an optimal strategy to guarantee accurate measurements. In 

the experiment, there were no significant differences in the errors when comparing the results 

from using 4 GCPs as opposed to 16 GCPs. The selections of parameter values largely depend 

on the level of accuracy required by users. 

Table 2. Impact of Soil Types on the Accuracy of Volumetric Measurements 

Soil Type Number of 

Calibrated Photos 

Actual Volume 

(ft3) 

Computed Volume 

(ft3) 

% Error 

Clay 11 1.5 1.48 1.33 

Sand 11 0.5 0.53 6.00 

Gravel 10 0.5 0.47 6.00 

Rock 10 0.5 0.45 10.00 

The limitations of this study mainly came from the selection of the UAS equipment and 

photogrammetry software. The UAS, an especially low-cost device, limited the sensor payload in 

weight and dimension, so low-weight sensors with small-format amateur cameras had to be used. 

When compared to more expensive UAS with large format cameras, the UAVs acquired a higher 

number of images in order to obtain the same image coverage and comparable image resolution. 

Moreover, the low-cost sensors were less stable, which resulted in a lower image quality. When 

processing the images collected by the UAV, this study did not research the differences caused 

by varying devices. In the future, more research could be conducted regarding how different 

devices and other potential environmental factors impact the measurement accuracy when the 

limitations of UAS technology can be solved – such as inaccurate geo-referencing capability and 

limited battery capacity. 
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ABSTRACT 

Sensors and computation increase the precision, efficiency, and agility of crane operations. 

This paper presents an ongoing work of developing computational methods to enhance the crane 

operations. This research focuses on three significant challenges for crane operators: (1) 

identifying construction equipment and their activities, (2) identifying and tracking personnel, 

and (3) tracking the rigging object. In the preliminary stage, we focus on the first challenge to 

identify construction equipment and activities. 5,000 images have been collected and manually 

labeled for training deep learning detection algorithms. In the future steps, we will employ 

inception-SSD method to locate personnel, trucks, and excavators. After that, we will propose a 

method that recognizes excavator activities from crane views. Once learning algorithm is the 

reliable, it will benefit the crane operators to operate the cranes with confidence. It can also 

reduce the difficulty of crane operation. Training time and safety concerns will be reduced 

simultaneously. 

INTRODUCTION 

Sensors and computation increase the precision, efficiency, and agility of crane operations. 

The computer vision technology has gained great success in construction automation field. This 

paper presents an ongoing work of developing computational methods to enhance the crane 

operations. Crane erections are often in the critical paths for construction projects, and efficiency 

of crane operations directly influences the overall project performance (Neitzel et al., 2001). 

Meanwhile, crane cableway caused by inertial forces and winds makes it difficult for operators 

to control safely. Additionally, a dynamic site environment with moving people and construction 

equipment add challenges for safe lifting. The final objective of this research is overcoming three 

major challenges for crane operators: (1) identifying construction machines and activities, (2) 

identifying and tracking personnel and (3) tracking rigging objects. 

Crane perception based on the smart sensors and controllers make crane operations more 

efficient and safer. As illustrated in Figure 1, labels S and C represent smart sensors and 

controllers respectively. The main idea of crane perception is widely deployed sensors acting like 

cameras in the environment, which allow the remote users to "know" the working progress. 

Information collected from the sites will be sent for processing uses artificial intelligence for 

crane control. The visual perception automatically identifies high risk and high-value works. 

This allows crane operators and remote users to sense the environment, prepare for the next 

tasks, and most importantly, prevent potential risks. 
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Figure 1. Vision of Crane Perceptions 

In the preliminary stage, we have focused on identifying construction equipment and their 

activities. These construction videos can be used to identify construction equipment which 

prevent potential collisions during crane operations. Recognizing equipment activities will help 

remote users to estimate the valuable productivities. Until now, we have manually labeled 5000 

images of equipment and tested them with two deep learning algorithms, YOLOV3 and 

Inception-SSD. The detection results indicate that the Inception-SSD performs better than 

YOLOV3 in our dataset. After that, we have proposed a method that puts the detected objects to 

3D CNN classifiers which recognizes excavator activities from crane view. The proposed 

method can be extended to other construction equipment such as lifters, bulldozers, and 

backhoes. In the future, we will focus on developing reliable tracking system for personnel and 

rigging objects tracking. 

LITERATURE REVIEW 

The early work of object detection is the cascade detector (Viola and Jones 2001), which 

consists of multiple stages. Each stage is an ensemble of simple classifiers. The difficulty of 

detection comes from the huge differences within the same category. To fill this gap, various 

kinds of deformable template methods (Coughlan et al., 2000; Cootes et al., 2001), and part-

based methods (Crandall et al., 2005; Amit and Trouve, 2007) have been conducted in computer 

vision community. In recent, the convolutional neural networks (CNNs) have been demonstrated 

in object detection and achieved reliable performance. The CNNs represents images through 

designed structure of many layers for feature extraction and transformation, which makes the 

detector understands the images from a higher level (Krizhevsky et al., 2012; Vedaldi and 

Zisserman, 2015). Girshick (2015) proposed the Fast r-cnn detection model and Ren et al. (2015) 

proposed the Faster r-cnn model. Redmon et al. (2016) introduced the YOLO darknet into 
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detection, which can reach real-time performance. Liu et al. (2016) proposed the SSD model to 

exploit the information of the tiny image area. 

 
Figure 2. The analysis of construction equipment detection dataset 

Crane operators work in difficult environments. It often requires them to complete erection 

activities without a clear view while being alert to all possible risks. Many researchers have 

developed methods to use cameras to enhance the perceptions while operating cranes. Gong and 

Caldas (2009) installed multiple cameras on the crane boom to identify construction activities 

from the video streams. Weerasinghe and Ruwanpura (2009) tracked construction resources to 

reduce waste. Rezazadeh and Brenda (2012) have developed automated methods to detect and 

track trucks to monitor productivity in real time. Han and Lee (2013) developed a method to 

protect workers from potential collisions by using cameras. Yang et al. (2014) employed 

Gaussian background subtraction (Wren et al., 1997) to detect crane jibs to analyze crane 

activities from video streams. Kim and Chi (2017) have developed tracking methods to locate 

construction equipment. Xiao and Zhu (2018) tested 15 tracking algorithms in construction 

videos and identified stable trackers in various backgrounds. 

CONSTRUCTION EQUIPMENT DETECTION 

Object detection is the primary section in this research. We need to identify equipment, 

personnel and rigging objects by detectors. It is important to choose a reliable detector to conduct 
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this research. The deep learning detection methods have shown high performance in many 

applications and we decided to adopt this technology in our research to identify construction 

objects. In order to evaluate detection algorithms, we have collected and manually labeled 5000 

images of equipment and tested them with deep learning detection algorithms YOLOV3 and 

Inception-SSD. 

There are four types of construction equipment labeled in the current dataset, which are 

truck, excavator, loader, and backhoe. We have analyzed our dataset from different perspectives 

in Figure 2 and compared it with COCO dataset (Lin et al., 2014), which is a well-known 

detection dataset in computer vision. In Figure 2(a), it shows that most images in our dataset 

contain one or two categories, while COCO has a uniform distribution. In Figure 2(b), 58% of 

images contain only one instance and 30% of the images contain two instances. We can find that 

our dataset is a specific dataset for construction equipment, while COCO is a general dataset for 

daily life objects. In Figure 2(c), the instance size of our dataset is larger than COCO. Based on 

these differences, the detection algorithms perform well in computer vision need to be re-

evaluated with the construction equipment dataset. It needs to point out that this research is an 

on-going research. Comparing with other mature datasets (Figure 2(d)), we have limited number 

of categories and instances. And we will put more efforts into this construction detection dataset. 

YOLOV3 and Inception-SSD have been selected to test on our dataset because of their 

promising performance on COCO. This dataset has been separated to trainset (90%) and valid-

set (10%). In this research, we have used the Mean Average Precision (mAP, LeCun et al., 2015) 

to evaluate the detection results. mAP is the evaluation criteria decided by Precision and Recall. 

Precision measures how accurate the algorithm is, but it cannot reflect the performance of 

finding all positive instances. mAP is able to show the detector performance in both accuracy 

and robustness. Higher value of mAP means better detection performance. The testing results 

can be found in Table 1. It shows that both detectors have higher mAP on construction dataset, 

which means detecting construction categories is simpler than detecting general categories. This 

result indicates that detecting construction categories by using vision sensors installed on the 

crane is a reliable option. Inception-SSD methods perform better than YOLOV3 from an overall 

view and we will employ Inception-SSD for the crane perception. 

Table 1. The testing performance of detectors 

 AP@0.5 

Truck 

AP@0.5 

Excavator 

AP@0.5 

Loader 

AP@0.5 

Backhoe 

mAP@0.5 

Overall 

YOLOV3 0.71 0.93 0.91 0.93 0.87 

Inception-SSD 0.80 0.93 0.94 0.95 0.91 

EXCAVATOR ACTIVITY RECOGNITION 

We have proposed a method to recognize construction activities by 2D-CNN detector and 

3D-CNN classifier. 3D-CNN means putting continuous images instead of a single image into the 

CNN model as the inputs. The 3D-CNN classifier U3D (Tran et al., 2015) has been used in this 

research. Because excavation is the most common activity in construction sites, we will take 

excavator as an example to illustrate our methods. The overview of proposed methodology has 

been shown in Figure 3. 

In order to identify excavator activities, multiple continuous images will be the inputs instead 

of a single image. This kind of input is well-suited for exploiting spatiotemporal features. For 

each new frame, we will compare it with previous t frames. Inception-SSD will detect excavators 
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