
 

Figure 8. Tenacious deposits on glass 

surface due to rainwater run-off from 

concrete panels. (RCI 2010, with 

permission from RCI, Inc.). 

Figure 9. Unacceptable cleaning 

pattern remains after improper 

polishing operation. (RCI 2010, with 

permission from RCI, Inc.). 

 

Given the cause of the swirling pattern, attempts were made to mitigate the pattern 

using an optical-grade polish. While recommended surface restoration techniques 

vary among the major glass manufacturers and fabricators, many of them include 

polishing with cerium oxide. As a laboratory trial, a proprietary blend of cerium 

oxide polish was applied with a hard felt pad mounted on a variable speed drill. 

Localized results on the spandrel panel sample indicated that the fine scratches of the 

swirling pattern were essentially removed.  

 

Based on these promising laboratory trials, field mock-ups were performed utilizing 

commercial-grade, closed-wheel automated equipment that recirculates a thin slurry 

of a blended cerium oxide polishing compound in potable water. Ten polishing trials 

were performed to evaluate the number and pattern of polishing passes necessary to 

achieve conditions acceptable to building management. After the first several trials 

with multiple polishing passes in each direction, the exterior glass surfaces were 

significantly improved compared to their original conditions when viewed in 

sunlight. However, when viewed in critical light (i.e., viewed at very small angles 

relative to reflected sunlight), the remaining faint crisscross pattern and residual 

scratches were judged to be unacceptable by building management. Only a 

combination of multiple linear and circular polishing passes resulted in a nearly 

blemish-free surface under critical sunlight conditions (Figure 10). A separate edge 

polishing unit was used to address the outer one inch of affected surface area that 

could not be reached with the shrouded closed-wheel unit. 

 

Periods of direct sunlight provided the best conditions for viewing glass surfaces 

from the exterior and interior of the building. When polishing trials were conducted 

in the shade or during overcast periods, the presence of the swirling patterns and the 

progress of the polishing efforts were evaluated using a 250-watt portable work light 

(halogen bulb) held close to exterior glass surface.  
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This case study and others (not included herein) reveal that angel hair scratches are 

more likely the result of inappropriate cleaning operations rather than a storm event. 

Based on past experience, rubs and other surface blemishes with a relatively 

prominent points of impact, such as crushes, digs or scratches, have a greater 

likelihood of occurrence from a storm event. 

 

 

Figure 10. Upper window unit after 

remedial polishing, resulting in a nearly 

blemish-free surface. (RCI 2010, with 

permission from RCI, Inc.). 

 

 

Western Region Hotel 

  

The facade of this hotel, situated in a hurricane-prone region, includes exposed 

concrete elements and sliding glass door assemblies. As a result of exterior 

restoration work, which involved painting, concrete repairs and sliding door 

replacement, the exterior glass surfaces of the new sliding doors became scratched. 

The affected lites of glass were all fully tempered. Reportedly, no specific glass 

protection measures had been taken during the restoration work and various 

subcontractors had performed cleaning of the glass following their respective work 

operations. 

 

The glass frequently exhibited many closely spaced parallel linear scratches as shown 

in Figure 11. Some scratches were longer than 3 inches. While the scratch pattern was 

typically random, near obstructions (e.g., balcony railings) the scratches were 

generally oriented in the same direction. By experimenting with the type of scraper 

(Figure 12) reportedly used to remove concrete patching debris from the glass, the 

authors were able to replicate the documented scratches.  

 

All noted scratches were similar in appearance; therefore, it could be concluded that 

they were generally the result of inappropriate cleaning operations rather than 

previous storm damage. Some particles were noted to be adhered to the exterior heat-

treated glass surfaces (as noted in the “Industry Debate” section above). By 

experimenting with trial cleaning of these surfaces, it was determined that adhered 

particles did not play a significant role in the development of the subject scratches. 
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Figure 11. Multiple linear scratches 

documented on sliding glass doors. (RCI 

2010, with permission from RCI, Inc.). 

Figure 12. Tile scraper reportedly used to 

remove concrete patching debris from 

glass. (RCI 2010, with permission from 

RCI, Inc.). 

 

Western Region Residential Towers 

 

Two recently completed residential towers containing sliding glass doors and 

punched window assemblies had documented glass surface damage in the form of 

scratches and point blemishes. As shown in Figure 13, both deeper scratches as well 

as fine angel hair scratches were noted on the interior (No. 4) and exterior (No. 1) 

IGU surfaces. Point blemishes (Figure 14) were also present on both surfaces. As 

noted above, the occurrence of relatively uniform angel hair scratches from storm 

debris are less likely than other blemishes with a relatively prominent point of impact. 

Based on laboratory analysis, the dark-colored point blemishes had a morphology 

consistent with molten iron. As a result, this damage was not likely caused by a storm 

event. 

 

Figure 13. Combination of linear 

scratches and angel hair scratches 

observed in direct sunlight. (RCI 2010, 

with permission from RCI, Inc.). 

Figure 14. Dark-colored point blemishes. 

(RCI 2010, with permission from RCI, 

Inc.). 
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CONCLUSIONS  

 

From the six case histories presented above, the following guidelines are suggested 

for the investigation and remediation of surface-damaged glass following a high wind 

event: 

 

• The ASTM C 1036 test methods for blemish detection, or an adaptation 

thereof, can be utilized to determine an acceptable level of surface damage. 

• It may be necessary to evaluate the structural integrity of glass lites following 

storm events if aesthetic criteria other than those in ASTM C 1036 are 

utilized. 

• It is necessary to distinguish between damage likely resulting from storm 

events or other causes based on physical evidence, field tests, and supporting 

data. 

• In some cases, it is cost-effective to repair surface-damaged glass using 

specialized polishing techniques; however, mock-ups are recommended to 

confirm aesthetic acceptance. 

• Laboratory studies are often helpful in determining magnitude and identifying 

characteristics of surface blemishes, including embedded debris. 

• Do not assume that hurricane-resistant glass products guard against significant 

surface damage and the need for future glass replacement. 

 

Furthermore, since the improper handling and construction clean-up of glass units can 

also result in unacceptable aesthetic conditions and possibly structural damage, the 

authors offer the following guidelines for new construction or remedial work: 

 

• Ensure that glass surfaces are protected, preferably in a manner suitable to the 

new glass manufacturer if applicable, until the project is complete. 

• Prior to commencing work, require the contractor to submit glass cleanup 

procedures for architect/engineer approval; include procedures for all types of 

anticipated debris and glass damage. 

• Consider performing a benchmark glass condition assessment prior to 

commencing any facade work.  

• Contractor should notify the architect/engineer of record of any scratches or 

debris on glass prior to commencing cleanup. 

• Consider including required new glass surface quality in specifications; in 

addition, cite which standard or project-specific protocol will be utilized to 

evaluate glass surface condition prior to final completion. 

• Consider potential glass staining conditions and attempt to eliminate in the 

design phase. 
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ABSTRACT 

 

Glass damage and failures of cladding components during extreme wind 
events can be attributed to a variety of different mechanisms, including extreme wind 
pressures, missile impacts from debris, and structural performance of glass within its 
support system. Wind speeds in excess of design values, either during the storm or 
through the channelization of the winds due to the close proximity of other structures, 
can lead to surface pressures similarly beyond design. However, extensive cladding 
damage has been observed in regions where wind speeds experienced were known to 
be below the design values. This research provides insight into the performance of the 
JP Morgan Chase Tower and the adjacent parking/office structure, in the downtown 
Houston area in the aftermath of Hurricane Ike. It is shown through both 
computational fluid dynamics (CFD) and wind tunnel analyses that slight variations 
in wind direction led to increased development of vortical flow between the high-rise 
and adjacent structure, as well as increases in the observed pressure loads on the 
exterior surface. The combined effects of elevated pressures and the existence of 
vortical flows possibly initiated damage and then propagated further damage from 
airborne debris. Similar mechanisms of debris damage were witnessed during 
Hurricane Alicia (1983), which also impacted Houston. 
  
INTRODUCTION 
 

Analysis of glass breakage and failures of cladding components in extreme 
wind events demonstrates that damage can be attributed to some of the following 
mechanisms: wind pressures exceeding design values, missile impact from wind 
borne debris and the structural performance of glass within its own support system. 
The failure of cladding, particularly during tropical storms, has been well 
documented, with the major cause typically identified as roof gravel or other 
windborne debris (i.e. Kareem 1985, 1986; Minor and Behr 1993). In Houston, TX., 
for instance, surveys of extensive glass damage from Hurricane Alicia revealed that 
over 80% could be attributed to windborne debris (Minor 1984).  Sources of the 
debris included roof gravel, broken glass, and insufficiently secured roof-top 
appurtenances (Kareem 1985, 1986). 

Wind speeds in excess of design wind speeds, either during the storm or 
through the channelization of winds due to the close proximity of other structures, 
could also lead to damage through surface pressures in excess of corresponding 
design values. However, it is possible to observe cladding damage in regions where 
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the wind speeds experienced were known to be below the design values. During 
Hurricane Alicia, the fastest mile wind speeds at 33 ft were estimated to be 80 mph, 
below the design wind speed of 90 mph as outlined in ANSI-82 (Kareem 1985, 
1986).  Additionally, internal pressure fluctuations could also be attributed to 
cladding failure, particularly if the windward wall experienced a breach in which the 
opening exposed the remaining side and leeward walls to higher pressures. 

Hurricane Katrina, a category 3 hurricane at landfall, had a significant impact 
on both urban and suburban areas of New Orleans, LA. In the aftermath, field 
reconnaissance surveys were performed to assess the level of damage to glass and 
cladding on a number of tall buildings in the central business district of New Orleans 
(Bashor and Kareem 2006). Considerable evidence showed that wind-borne debris 
from rooftops contributed to the glass and cladding damage of nearby buildings. 
While many codes and standards, such as ASCE7-05, provide some design 
recommendations that account for both the possibility of flying debris and eliminating 
sources of flying debris, the effectiveness of these standards continues to be 
evaluated. 

Similar to hurricanes, tornadoes could also have major impacts on suburban 
developments and on smaller urban areas, though their effects may be highly 
localized. It was previously hypothesized that urban environments were not favorable 
to the development of tornadoes, where tornadic systems were thought to be 
dampened by the aerodynamics of building clusters and the attendant heat island 
effects. However, severe storms in and around Atlanta, GA in 2008 showed that 
tornado-producing systems may not be disturbed by the urban environmental effects, 
especially in cases where the urban development sprawls over a large region with 
open spaces rather than dense developments like New York City. The extremely 
localized winds in tornadoes cause significant damage to low-rise structures, through 
cladding damage from aerodynamic pressure loading and from debris impacts. 
Though many of these areas are contained within the hurricane wind speed design 
regions of the United States, tornadoes possess unique vortical wind fields that have 
the ability to transport larger debris items, which may pose a hazard beyond the scope 
of the current design parameters. 

The Houston-Galveston area of coastal Texas has been subjected to numerous 
hurricane impacts, prompting various building and cladding performance studies. On 
August 18, 1983, Hurricane Alicia battered the Houston-Galveston area of Texas 
causing an estimated $1.5 billion in damage and destruction (Kareem 1985, 1986). 
While the structural systems of the buildings in these areas performed as expected 
during the storm, the cladding and glazing on some structures did not fare as well 
(Williams and Kareem 2003). Hurricane Alicia left the streets of downtown Houston 
littered with the glass shards from the broken windows of office buildings and high-
rises (Kareem 1985). More recently, Hurricane Ike in 2008 impacted the Houston-
Galveston corridor, causing substantial damage to some of the taller, more prominent 
buildings in the central business district (CBD). During Hurricane Ike, there were 
pockets of concentrated damage to glass around the CBD of Houston. Within the 
CBD, the JP Morgan Chase Tower and the adjacent structure to the south-east, in 
particular, sustained a rather unusual pattern of cladding and glass damage on their 
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JPMCT. Residents on the 10th floor of an adjacent building witnessed the damage 
and swirling winds at the intersection of Texas Ave. and Travis St. Eyewitnesses also 
reported seeing transient formations of tornado-like vortices at the corner of Texas 
and Travis. These formations were extremely short lived and were estimated to 
extend from the street level to approximately the 10th story of the JPMCT. Witnesses 
also reported glass shards being lifted up within the tornado-like flows, as well as that 
the noise level of glass/cladding being pelted by broken shards and also of shards 
dragging along the street was overwhelming. 

Formal reports compiled by a number of agencies (NatHaz Modeling 
Laboratory 2008; ABS Consulting 2008; Federal Emergency Management Agency 
(FEMA) 2009) have provided a synopsis of the damage patterns. In addition, FEMA 
(2009) also noted that buildings with aggregate-surfaced roofs were located to the 
south of the JPMCT. However, the wind speed and direction would have been 
insufficient to mobilize the aggregate-surfaced roofs to generate the damage 
observed. Rooftop damage to the JPMCT was minimal, while the Chase Center roof 
membrane covering was compromised during the storm. 
 
EXPERIMENTAL SETUP 

 

The JPMCT is bounded by a series of prismatic shaped buildings, whose 
arrangement was modeled both in a wind tunnel and utilizing computational fluid 
dynamics (CFD). The following sections describe the setup and purpose of these 
experimental settings: 

 
Wind Tunnel 

 
Flow visualization inside a wind tunnel was performed using scaled models of 

the buildings, identified in Figure 2. The purpose was to visually identify particular 
flow incidences that would induce the unique flow patterns observed by eyewitnesses 
between the JPMCT and Chase Center. Observations of the flow patterns between the 
structures were used to establish the particular flow angles critical for vortex 
development, and those flow angles were then selected for further study using CFD. 

The CFD portion of the study was also coupled with targeted pressure 
measurements on a scaled model of the JPMCT. Given the limited number of 
pressure measurement locations available, the CFD experiment (described in the 
following section) was able to provide information regarding areas of the building’s 
surface where critical surface pressure loading may have occurred. There are 35 
measurement locations, mainly located along the east corner of the JPMCT, as well as 
along the south-east face. Figure 4B shows the arrangement of pressure measurement 
locations on the scaled model surface. 
 

CFD 

 
While wind tunnel studies offer the most reliable measure of wind pressures 

and forces on buildings or urban arrangements, advances in CFD simulations are 
evolving and the offer a multifaceted view of wind effects in a numerical domain. 
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