
effect of spurious fluctuation of the cold start in the water level time series, the simulation result 

which lies within the first week of both runs was not used in quantitative measuring of skill 

assessment criteria.  

 
Figure 2. Schematic layout of the U.S. Northeast Mid-Atlantic Coast. The Red small triangles are 

observational measuring gauges which operates by NOAA. 
  

MODEL SKILL METRICS 

Comparison of model and observations 

The most conventional way to compare simulated model variables with measurements is 

visual comparison. However, with advancement in measurement technologies, a dense 

observational data set is available to be used in model validation or skill assessment. Thus, it is 

necessary to provide objective means to quantitatively assess the quality of the model�s 

performance. Therefore, a set of statistical measures and procedures are needed to conduct a 

comprehensive analysis of differences between model and measurement data in a way that is 

suitable to a specific application. 

There are a number of statistical measures that are useful to assess the model�s behavior. 

There is no consensus on which statistical metric is the best in revealing the quality of a model�s 

performance. Therefore, it is useful to employ several statistical tests to quantify misfit among 

the same set of data. Thus, the model�s performance should be evaluated using several metrics. 

(Stow et al. 2009).  

Criteria Definition 

In this study, number of statistical indices such Normalized Root-Mean Square Deviation 

(NRMSD), Coefficient of Determination (R
2
), Scatter Index (SI), and Normalized Bias (NB) are 

used to quantify the misfit between model simulated variables and corresponding observation 
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data; Denoting N= number of observations, a set of model simulation values as m, a set of 

observation values or known values as O, overbar is mean of the set. They are defined as:  

                        

( )
2

1

1

N
NRMSD=

( )

N

i i

i

i

O m

Max O
=

−
                                                        (1) 

The NRMSD in Eq. (1)is a frequently-used measure for discrepancies between the model 

prediction and the values actually observed. The maximum value of the observation set was 

chosen to normalize the root-mean square deviation. This index can indicate the model 

prediction accuracy in reproducing observation.  
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S  
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S
                                                                          (2) 

In Coefficient of Determination (R
2
) where variance of observation data is ܵܵ௧௢௧ =∑ ሺ ௜ܱ − തܱሻଶ௜ , the sum of residual square	ܵܵ௥௘௦ = ∑ ሺ ௜ܱ −݉௜ሻଶ௜ , and average of observation 

values	 തܱ = ଵே∑ ௜ܱே௜ୀଵ . Coefficient of determination, which is the square of the correlation 

coefficient, is a measure of the goodness-of-fit between the two time series. On the other hand, 

the more data on the regression line, the higher value of R
2
. If the prediction varies together with 

the observed data, a value near 1 (or 100%) can be achieved.  
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where ܧ௜ = ݉௜ − ௜ܱ	denotes the error between the modeled time series and measured data. 
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Where the average error is Eഥ = ሺ1 ܰ⁄ ሻ∑ |O୧ −m୧|୒୧ୀଵ  .The Scatter Index (SI) is the ratio 

of the standard deviation of the observation-to-prediction discrepancies to the average 

observation values (Hanson et al. 2009). 
 

RESULT AND ANALYSIS 

Comparing time series of tidal levels with observation (in time domain) 

In this paper, the simulation result was compared with the observation data collected 

from the measurements collected at 19 stations over U.S. Northeast and Mid-Atlantic coast. In 

Figure 3, a visual comparison between the NOAA observed and modeled water level time series 

is displayed for number of stations. The figures start date is from 0:00 UTC July 30, 1991 to 0:00 

UTC Aug 9, 1991. As the comparison shows, there is obvious spurious oscillation of water level 

at 12:00 UTC Aug 1, 1991 where the short simulation run began (green line). 

This unrealistic water surface variation originates from a cold start run. Therefore, the 

first 7 days of both short and long simulation run were removed from the skill assessment 

metric�s measurements.  
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There is a good agreement between model result and observation data set observed in 

visual illustration. However, there are some misfits between the observed and modeled water 

level.   

 
 

Figure 3. Water level Time series at number of NOAA gauge stations. Observed values are shown in red line 

with red circles attached to it; modeled time series are shown in blue color and line in green color is for the 

long and short simulation run, respectively. 
  

Comparing tidal constituents with known values (provided by NOAA) 

Tidal harmonic constituents were derived from the time series using harmonic analysis 

procedure. Newly-developed parameter identification was used to identify harmonic constants 

using modeled time series under astronomical tide simulation only. Skill assessment criteria were 

computed based on the identified amplitudes and phases at several stations. The modeled time 

series, obtained from long run simulation (108 days), is used for the harmonic analysis 

procedure.  

The optimization procedure performed better using modeled time series from the long run 

simulation than from the short run. This is why identified parameters, which harmonically 

analyzed from the long run simulation, are presented. In this part, the Normalized Root-Mean-

Square Deviation (NRMSD) criteria were used to measure how well the optimization was 

performed.  

Analysis of assessment results in time domain 

All three statistical indices employed as metric are shown in Figure 4. The values of 

computed indices are in a very good range which indicates the model performed well in 

reproducing water surface elevation across the computational domain. For instance, the large 

values of R
2
 indicate that good accuracy in replicating flow circulation was achieved. On the 

other hand, the regression line passes nearly through 90% and greater of the points on a scatter 

plot. The highest linearity between the observation and simulation exists in East port and Cape 

May with 96%, while R
2
 at Charleston is the lowest.   

The Average Bias value illustrates that the model overestimates in reproducing water 

level time series. At Charleston, Averaged Bias and Scatter Index (SI) are relatively large. This 

may be attributed to many factors such as the location of NOAA water level measuring gauges 

which may possibly be located in the bay or behind a barrier in embayment. Thus, it makes the 

model unable to capture well the flow circulation around them.  

Similarly, relatively large Averaged Bias in Chesapeake Bay Bridge, Lewese, the 

Battery, Newport, and Boston can arise from poor mesh in computational domain near these 

stations. Near these stations, a finer mesh is required to capture small variabilities that affect 

modeled time series. 
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Figure 4. Computed values of three criteria used in this paper which are illustrated in a radar plot; 

Coefficient of Determination (
 
Diamond), Averaged Bias (Gradient), and Scatter Index (Circle). 

Analysis of assessment results of identified constituents 

The tide harmonic constituents obtained from the parameter identification were compared 

to known values. The statistical index, NRMSD, were computed to measure the model skill with 

respect to the seven main tidal harmonic constituents; semi-diurnal constants, including M2, S2, 

N2, and K2 as well as O1, Q1, and K1 as diurnal tide components. The result suggests that, 

regardless of physical geographic location and accuracy of reproduced time series, the parameter 

identification approach performed much better in identifying amplitude (red) than phase (blue) 

(Figure 5).  

The result indicated that the identification accuracy in identifying semi-diurnal tide 

constituents is greater than diurnal tide components (Figure 5). This can be attributed to the 

stronger semi-diurnal tide signals as well as the larger range of semi-diurnal amplitude in the 

Atlantic Ocean. Accuracy of identified phase with regard to known values is slightly different 

from accuracy which obtained in identified amplitudes (Figure 5).  

The average value of NRMSD in identified phases is 31%. As mentioned earlier, the 

accuracy of identified harmonic constituents depends not only on modeled time series. Strength 

of parameter identification in identifying parameters is also dependent on many factors which 

will be explained in the next sections. 
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Figure 5. Skill assessment metric, Normalized Root-Mean-Square Deviation in identifying Amplitude. 

Harmonic Analysis 

The routine prediction of tides at selected coastal stations is based on a simple principle. 

This principle asserts that for any linear system whose forces can be decomposed into a sum of 

harmonics having the same frequencies but with different amplitudes and phases from the forces. 

Water elevation variation, for the tidal decomposition, can be written as: 

                                   ( )0

1

( ) cos
N

i i i i i iX t X f A t V uω ψ= + + + −                                       (5) 

Where N is number of tidal components, X0 is initial water level, ܣ௜ is constant 

amplitudes, and ߰௜ is constant phase (epochs). Nodal factor is given by ௜݂ and the equilibrium 

argument by	 ௜ܸ +  ௜. Among these terms, only the frequencies are an absolute constant for givenݑ

constituents (Herbich 1999).  

Parameter Identification Procedures 

An efficient method of parameter identification is to take advantage of optimal control 

theories to minimize overall discrepancies between water level time series (computed by 

traditional harmonic tide equation (Equation 5)) and in-situ measurements collected from NOAA 

tide and current website. The discrepancies can be generally defined as a performance function 

in the form of: 

                                                 ( )
2

1

( )
M

cal obs

j j

j

J X X X
=

= −                                                                                                  (6) 

Where J is performance function that computes square error between water level 

computed by harmonic tide equation (Equation 5) and observation data collected at each NOAA 

station. An iterative procedure is employed to minimize the performance function. 
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The L-BFGS algorithm is capable of optimizing unconstrained problems, executed in 

parameter identification procedure (Ding et al.  2004).  In L-BFGS algorithm, the norm of 

gradient of the objective function, with regard to the two parameters were calculated, was 

computed (at each iteration) in order to check if the optimal solution had been reached. Gradients 

of performance function with regard to amplitude and phase are presented in Equation 7 and 8. 
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SUMMARY AND CONCLUSION 

In this study, an integrated coast-ocean circulation model, CCHE2D-Coast, was 

validated. The model performance was evaluated and the errors associated with modeled water 

level time series were quantified through two approaches. In the first approach, the misfit 

between time-dependent water surface elevation and observed data was quantified at several 

NOAA monitoring tidal gauges. As a second approach, harmonic analysis was performed to 

identify the tidal constituent parameters. Then, the discrepancies between identified tidal 

harmonic components and known values were computed 

In this study, a suite of metrics comprised of Normalized Root-Mean Square Deviation, 

Coefficient of Determination, Scatter Index, and Averaged Bias is used to quantitatively assess 

the model performance in reproducing flow circulation. Overall, the extent to which most 

metrics were obtained suggests that there is good agreement between the modeled time series 

and observed data in the majority of monitoring points. Therefore, it is ascertained that the set of 

time series used in the harmonic analysis have good accuracy.  

To determine the tidal harmonic components, amplitude and phase, a newly-developed 

parameter identification approach was used to identify harmonic constituents. A phase shift may 

exist in modeled time series, which can cause an incorrect comparison between set of data 

points. Therefore, comparing tidal harmonic components can eliminate some sources of errors 

that stem from a possible phase-lag between observation and model-simulated results. The 

identified tidal constituent parameters, amplitudes and phases, are used to compute the employed 

criterion with respect to the known values. The result of statistical analysis revealed that the 

accuracy in identifying amplitudes is higher than in identifying phases.  

The results demonstrated that the model, driven by astronomical tide-only forces, was 

able to accurately capture ocean-coast flow dynamics across the U.S. East Coast where complex 

geometry exists. To further enhance the model skill in simulation of the tide currents, a finer 

resolution within computational domain must be taken in shallow water regions. In addition, 

taking into account some other forces such as pressure and winds can improve the accuracy of 

the simulation result. 
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Abstract 

Xiaowan Reservoir was created by the construction of Xiaowan Dam on Mekong River. 

This dam is the second highest arch dam in the world with 292 m tall and 902 m long. The 

reservoir is about 178km from upstream to the dam, and the surface area is around 189 km
2
. The 

water depth near the dam is very deep, which normally varies from 200 to 270m seasonally. For 

such a deep reservoir, the vertical temperature distribution show a significant stratified structure. 

In this study, a three dimensional numerical model was developed for simulating the flow fields 

and temperature distribution in Xiaowan reservoir near the dam. The effects of buoyancy on the 

momentum equations and turbulence transport equations was considered. For turbulence closure, 

the buoyancy-extended version of k-ε model was used. The model was first validated using a 

laboratory case of turbulent buoyant flow in a curved open channel, and then it was applied to 

simulate the flow and temperature in Xiaowan Reservoir. The numerical results were compared 

with field measurements, and the physical characteristics of flow pattern and temperature 

distribution in the reservoir were discussed.   

  

INTRODUCTION 

 

Many dams have been built with the intention to improve human quality of life by 

diverting water for hydroelectric power, irrigation, drinking water supply, navigation, and flood 

control.  The dammed reservoirs benefit people by providing usable and reliable water sources. 

However, adverse environmental impacts have been identified during and after many dammed 

reservoir constructions. It may greatly affect the river hydrology, sedimentation, temperature 

distribution, and aquatic ecosystems.   

Mekong River is the 7th longest river in Asia, and the 12th longest in the world. It has a 

length of about 4,350 km. Rising in southeastern Qinghai province, China, it flows through the 

eastern part of the Tibet Autonomous Region and Yunnan province, after which it forms part of 

the international border between Myanmar (Burma) and Laos, as well as between Laos and 
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Thailand. The river then flows through Laos, Cambodia, and Vietnam before draining into the 

South China Sea (Fig. 1). It plays an important role in the economic development of these six 

countries. Currently, 8 dams have been constructed or under construction on the upper Mekong 

River in China, and 12 dams have been planned or under construction on the lower Mekong 

River in other countries (Fig. 1). Mekong River is an international river, and the constructions of 

dams on the river have become a major environmental concern of these countries.  

Xiaowan dam, one of eight dams on the upper Mekong River in China, was constructed 

between 2002 and 2010. It is a 292 m tall and 902 m long double-curvature arch dam, the second 

highest arch dam in the world. The water depth near the dam is very deep, which normally varies 

from 200 to 270m seasonally. Heihui River flows into Mekong River from left bank at about 1.5 

km upstream of the dam. Its yearly averaged discharge is only 5% of Mekong River. Mekong 

River contributes major flow discharge to the reservoir. Figure 2 shows the dammed reservoir. 

The water intake of the power station is located on the right bank of the river. The climate in 

Xiaowan Reservoir belongs to the typical subtropical low latitude mountain monsoon climate 

(Xu et al 2014). Due to the deep water depth near the dam, a strong temperature stratification is 

formed generally between March and November. The curvature of Mekong River may also 

affect the temperature distribution in the reservoir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 3D numerical model was developed to simulate the turbulence flow and temperature 

distribution based on CCHE3D model (Jia, et al 2005 ) by considering the buoyancy influences. 

The heat exchanges between atmosphere and water surface due to solar radiation, long-wave 

radiation, evaporation, conduction and convection were considered as source terms in the model. 

Experimental results of turbulent buoyant flow in a curved open channel were used to test model. 

The model was applied to simulate the flow and temperature distribution in Xiaowan reservoir. 

The field measured data was used to calibrate the model. The simulated vertical temperature 

distributions were generally in good agreement with field observations. Both model results and 

Mekong River 

Figure 1. Dams on Mekong River 

(from www.meltdowninTibet.com) 

Figure 2. Xiaowan Dammed Reservoir 
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field observations show the temperature at the outlet of the dam is around 14-16
o
C in February 

and 15-17
o
C in May. The simulated results provide useful information to understand the 

temperature distribution in high dam reservoir and analyze the effect of high dam reservoir on 

the downstream water temperature.      

  

MODEL DESCRIPTION 

 

To simulate the flow and temperature distribution in a high dam reservoir, a numerical 

model was developed based on CCHE3D hydrodynamic model (Jia et al. 2005). CCHE3D is a 

finite-element-based unsteady 3D turbulence model that can be used to simulate turbulent flows 

with irregular boundaries and free surfaces. This model is based on the 3D Reynolds-averaged 

Navier-Stokes equations. By applying the Boussinesq assumption, the turbulent stresses are 

approximated by the eddy viscosity and the strains of the flow. There are several turbulence 

closure schemes available including: parabolic eddy viscosity model, mixing length model, k�ε 

model and nonlinear k�ε model. This model has been verified against analytical methods and 

experimental data representing a range of hydrodynamics phenomena.  

In the proposed model, the heat transport equation was solved using a finite element 

method consistent with the CCHE3D model. The influence of temperature on the flow density, 

momentum equations and k-ε equations were considered. The velocity and temperature fields 

were solved simultaneously.   

 

Governing Equations for Turbulence Flow 

 

Using the Boussinesq approximation for small density differences, the governing equation 

of momentum of three-dimensional unsteady hydrodynamic model can be written as follows: 
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The continuity equation can be written as 
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where ui (i=1,2,3) = Reynolds-averaged flow velocities (ux,uy, uz) in a Cartesian coordinate 

system (x,y,z); t = time; p = pressure; ν = fluid kinematic viscosity; ''

jiuu− =Reynolds stress; gi = 

acceleration due to gravity in the i
th

 direction; ρr = reference water density; ρ = density of 

thermal flow ( kg/m
3
), which may  be calculated by (Shen et al. 2003): 
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where T = temperature (
o
C). The free surface elevation (η) was computed using: 
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