
Table 1. Simulation configuration. 

Case Φଵ/ଶ and FOV (degree) No. of LED Coordinates of LED 

1 60 3 (2,2), (4,2), (3,4) 

2 70 3 (2,2), (4,2), (3,4) 

3 60 4 (2,2), (4,2), (2,4), (4,4) 

4 70 4 (2,2), (4,2), (2,4), (4,4) 

5 

6 

60 

70 

5 

5 

(2,2), (4,2), (2,4), (4,4), (3,3) 

(2,2), (4,2), (2,4), (4,4), (3,3) 

 

DISCUSSION. The analysis is conducted on 6 different cases. Figure 4 depicts the positioning 

error for each case. Positioning error of 0 indicates the points where localization was failed. As 

can be shown, the lower value of Φଵ/ଶ and FOV results in the inability of the VLP system to 

solve the triangulation problems in some areas since RSS measurement by at least three LED is 

not obtained. The positioning error of corner sides is higher compared to center points since the 

deployment of lights in the corner points is less dense.  

In table 2, the result of simulation for each case is provided. For the lower bound of  Φଵ/ଶ and 

FOV (60 degree),  increasing the number of lights can increase the coverage area significantly, 

while on the other hand, the higher bound of  Φଵ/ଶ and FOV can almost support the localization 

in the whole room even with the minimum number of 3 LEDs. The comparison of each case with 

similar transmitter configuration and different hardware parameter shows that the performance of 

the VLP system is largely dependent on the values for Φଵ/ଶ and FOV. One of the performance 

metrics of a positioning system is scalability (Liu et al. 2007) which ensures the normal 

performance of positioning even in large scales. The result indicates that the scalability of a VLP 

system can be largely affected by the selection of these hardware parameters. In the last column, 

since the covered area for case 1, 3, and 5 is small and thus not representative, the 95
th

 percentile 

accuracy is omitted. 

 

Table 2. Performance evaluation in different cases 

Case 
Φଵ/ଶ and FOV (degree) Percentage of covered area 

by VLP 

95
th

 percentile accuracy 

(cm) 

1 60 52.8 (Not representative) 

2 70 99.7 6.2 

3 60 61.6 (Not representative) 

4 70 ≃100 5.7 

5 

6 

60 

70 

89.1 

100 

(Not representative) 

4.4 
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     a) Case 2           b) Case 4     C) Case 6 

Figure 5. Comparison of histogram and CDF for different number of LEDs 

LIMITATION. Although the multipath propagation effect in a VLP system, unlike RF-based 

approaches, is not a major concern, the reflection component of light from objects, walls, and 

human can deteriorate the accuracy of the system. In this study, the direct line of sight is 

assumed between the transmitter and the receiver, and the reflection component is not 

considered. However, this issue is going to slightly affect the accuracy (Li et al. 2014) and not 

the trilateration algorithm for the coverage ability of the system studied here. Moreover, the 

receiver is assumed to be perpendicular to the ceiling, and the effect of small tilting angle which 

can increase the error is not included in the model.  

CONCLUSION 

Location information of the occupants in indoor environment can improve context-aware 

applications and provide location-based service. Recent achievements in the field of data 

communication through LED lights have defined applications, such as indoor positioning. In this 

paper, the scalability of a LED-based positioning system for a typical office environment was 

studied. The performance of the system was evaluated through using a trilateration positioning 

method in different cases with different number of lightings, and specific hardware parameters of 

LED lights and the receiver. The results show that the scalability of the system is mainly affected 

by the hardware parameters, and fine-grained location detail can be obtained by ensuring the 

scalability of the system. 
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Abstract 

Although the vast majority of construction accidents are caused by workers� unsafe 

behavior, the management of safety behavior remains inadequate. To reduce unsafe behaviors, 

construction managers have mainly relied on external formal controls (e.g., penalties) to prevent 

a violation of safety rules. However, a number of studies recently demonstrated that social 

factors such as group norms and social identification play a critical role in shaping workers� 

safety behavior. Although previous studies have illuminated the social aspect of safety behavior, 

there is a noticeable paucity of research addressing the mechanism that underlies the link 

between cognitive process, social influence, and safety behavior. To address this issue, this study 

aims to understand the effect of workers� socio-cognitive processes on their safety behavior 

using experimental analyses with computer simulations. An agent-based model was developed to 

perform experimental analyses by incorporating the theoretical cognitive model of safety 

behavior and empirical finding regarding social influence. Then, model experiments were 

conducted to explore the effect of the interaction between the socio-cognitive process and 

different management interventions on workers� safety behaviors. The results indicate that 

frequent managerial feedback has a positive but limited influence on workers� safety behavior. In 

addition, it was also found that workers� safety behavior can be further improved by combining 

the strict managers� risk acceptance and stimulation of workers� project-based identity. This 

study contributes to the body of knowledge on construction safety by modeling the socio-

cognitive mechanism of safety behavior and exploring how the mechanism interacts with 

different management interventions. 

 

INTRODUCTION  

Despite continuing efforts to reduce the number of accidents, construction remains one of 

the most dangerous industries in the United States. In 2014, 874 fatal occupational injuries 

within construction were reported, which is the highest number of all the industries (BLS 2015a). 

While the construction industry employs 4.1% of the national workforce (BLS 2015b), it 

accounts for 18.7% of all fatalities in 2014 (BLS 2015a). From the perspective of accident 

investigation, workers� unsafe behavior has been widely proven to be the leading cause of 

construction accidents (Hinze 2006). The unique characteristics of the construction industry, 

however, make it very challenging to improve workers� safety behavior using external formal 

controls such as penalties. Since all construction projects vary regarding design, location, 

participants, etc., work conditions differ from one project to another project. Also, the progress 

in construction projects makes complex and dynamic changes in work condition. Therefore, it is 
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very difficult to establish standardized work procedures and safety rules that cover all the 

complex and dynamic situations in construction projects (Andersen et al. 2015). Given these 

limitations of external controls, researchers recently have paid more attention to understanding 

how workers� unsafe behaviors are produced. 

 

RELATED WORKS 

There has been an interest in research that seeks to understand workers� unsafe behavior 

as the result of human error. Human error is defined as �the misjudgment or inappropriate 

decision in the cognitive process� (Chi et al. 2013). In this vein, unsafe behavior can be 

interpreted as the results of workers� inability to adequately perceive and respond to risk in the 

workplace. If workers underestimate the risk or assess the perceived risk as an acceptable one, 

workers will perform an unsafe behavior. The risk perception and risk assessment also have been 

included in the cognitive model of preventive health behavior. Considering that an individual�s 

health behavior is a reaction to potential health risk, individuals� health behavior, much like 

workers� safety behavior, is a response to potential dangers in the workplace. The health belief 

model and protection motivation theory noted that an individual�s likelihood to take recommend 

preventive health action is influenced by his/her perceived risk of diseases and perceived benefits 

and barriers of the recommend behavior (Rogers 1975). The links between risk perception and 

safety behavior and between risk assessment and safety behavior have been tested in previous 

studies (Wang et al. 2016). 

Since workers are working in a social environment, cognitive processes and behaviors 

would be affected by others. Many researchers noted that workers� safety behaviors are 

subjective to group-level informal controls (Choudhry et al. 2007). Social norms refer to shared 

perceptions of what is acceptable behavior or what is not acceptable in a group (Bendor and 

Swistak 2001). The shared perceptions in an organization are shaped by interactions among the 

organizational members. Interactions occur not only between workers but also between workers 

and management (Fang et al. 2015). Workers perceive acceptable unsafe behaviors in the current 

project by observing the action of management as well as coworkers (Choi et al. 2016). In the 

same vein, recent researchers have suggested multilevel social influence models which consist of 

the organizational level and workgroup level (Zohar 2000). 

Changes in behavior driven by social influence can be explained by individuals� social 

identification process. The social identity theory posits that when people strongly identify with a 

specific group, they try to conform to the group norm because they regard themselves as a 

representative of the group (Ashforth and Mael 1989). Social identity theorists identified this 

mechanism as the most fundamental way in which social norms affects behaviors. Choi et al. 

(2016) proposed and tested a theoretical model that incorporates multilevel social influence (i.e., 

management and workgroup norm) and social identification process (i.e., project identity) in 

construction workers� safety behavior context. The results showed separate impacts of 

workgroup and management norms on workers� safety behavior. Also, workers� social 

identification with their project intensifies the relationship between management norms and 

safety behavior and attenuate the association between workgroup norm and safety behavior. 

Although previous studies have examined workers� unsafe behavior, there is a noticeable 

lack of research addressing the mechanism that underlies the link between cognitive process, 

social influence, and safety behavior. The few studies that have proposed a theoretical model of 

the cognitive process have not investigated how the cognitive process interacts with the 

environment. Additionally, previous social influence studies have not uncovered the underlying 
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workers are willing to accept the perceived risk while others are reluctant to accept the risk. The 

empirical findings from Choi et al. (2016) are incorporated to determine workers� risk 

acceptance in this model. As shown in the Equation (1), workers� risk acceptance is influenced 

by risk attitude, management norm, and workgroup norm. Also, the project identity moderates 

the association between management norm and risk acceptance and between workgroup norm 

and risk acceptance (d in Figure 1). ܴܣ௜	(௧) = (1 − ܣ(௜ݓ ௜ܶ	(௧) + ܯ௜݆݌௜ቀݓ ௜ܰ	(௧) + (1 − ܹ(௜݆݌ ௜ܰ	(௧)ቁ +  (1)         	ߝ

Where RAi
(t)

 is worker i�s risk acceptance at time t, ATi
(t) 

is worker i�s risk attitude at time t, MNi
(t)

 

is worker i�s management norm at time t, WNi
(t) 

is worker i�s workgroup norm at time t, wi is 

worker i�s weight on social influence, and pji is worker i�s project identity. 

The management norm refers to workers� perception of managers� risk acceptance. The 

workgroup norm refers to workers� perception of coworkers� risk acceptance. If a worker 

observes a coworker�s unsafe action in a certain situation, the worker interprets that coworker�s 

risk acceptance as greater than the current risk. If the worker observes the safe action, his/her 

perception of the coworker�s risk acceptance will be lower than the current risk (e in Figure 1). If 

the perceived risk is not acceptable and the worker does not make a mistake, the worker 

performs a safe action (f in Figure 1). If the perceived risk is acceptable, the worker performs an 

unsafe action (g in Figure 1) and it either results in a near miss, or nothing happens (h in Figure 

1). The probability of a near miss depends on the severity of the risk which is determined by the 

site risk. If a near miss occurs, the worker becomes more risk-averse because he/she realizes the 

possibility of the accident. However, if nothing happens, the worker become more risk-seeking 

due to the optimistic recovery (Shin et al. 2014) (i in Figure 1). Also, the worker�s unsafe action 

can receive feedback from the managers based on the strictness and frequency of managers� 

feedback. Workers will not receive feedback from managers if the encountering risk is lower 

than managers� risk acceptance. In this case, the worker regards the perceived risk as acceptable 

in the current project and adjusts management norm. If the encountering risk is greater than 

managers� risk acceptance, the probability of receiving feedback from managers will be 

determined by the frequency of the feedback. The feedback from manager makes worker�s 

perception of management norm stricter (j in Figure 1). 

 

EXPERIMENT 

In order to investigate how the socio-cognitive mechanism of safety behavior interacts 

with different safety management interventions, impacts of three parameters (i.e., strictness of 

managers� risk acceptance, the frequency of managers� feedback and project identity) on the 

safety behavior were explored. Those three parameters represent various managerial 

interventions for improving workers� safety behavior at a construction site. The range of 

managers� risk acceptance and feedback frequency is determined from 0.5 to 0.9, thus excluding 

excessively lenient risk acceptance and infrequent feedback from managers, both of which fail to 

reflect safety management practices. However, the project identity had a broad range of value 

(i.e., 0.1 to 0.9) in the experiment. 

Common settings of other parameters for simulations are represented in Table 1. In this 

model, construction project with 20 crews, each of which has 10 workers, is simulated. Every 

worker can observe all other members within a crew, but they have only a slight chance to 

exchange social influence across crews (Ahn et al. 2013). The value of weight on social 
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influence is driven by the results of Choi et al. (2016). The value for the risk perception 

coefficient and initial risk attitude is randomly assigned based on the uniform distribution to 

reflect the heterogeneity of the individuals. The mean of risk perception coefficient is determined 

less than 1.0. because people tend to underestimate the external conditions and overestimate their 

capability to control or prevent accidents (Wang et al. 2016). 

 

Table 1. Common Settings for Simulations 

Parameter Setting Description 

Number of workers 200 10 crews x 20 workers 

Simulation days 150 150 days 

Site risk 0.5 Modest level of site risk 

Probability of network connection 

between workers 

Within crew: 100% 

 

Across crew: 3% 

Everyone in one crew can observe 

each other 

Workers have a small chance to 

observe across crews 

Risk perception coefficient Uniform distribution 

[0.6, 1.2] 

wi in Equation (1) 

Initial risk attitude Uniform distribution 

[0.1, 0.9] 

Varied risk attitude (ATi
(t)

 in 

Equation (1)) 

 

RESULT AND DISCUSSION  

The experiment runs thirty simulations for each configuration of the three parameters, 

totaling 21,870 individual simulation runs. Figure 2 and 3 represent the result of the experiments. 

Figure 2 illustrates the direct impact of the three safety management interventions on workers’ 
safety behavior. The Kruskal-Wallis test, which is a non-parametric mean comparison method, is 

conducted. As shown in Figure 2, all the interventions reduce workers’ unsafe behaviors.  
 

   
(a) Strictness (b) Frequency (c) Project Identity 

Figure 2. Direct Effect of Management Interventions 

First of all, there are significant differences in the mean of unsafe behavior in each level 

of strictness (Mean(High) = 0.313, M(Medium) = 0.342, M(Low) = 0.376, H = 594.31, p < 2.90 

× e
−16

). The result implies that the strictness of managers’ risk acceptance is directly related to 

workers’ perception of management norms because workers receive more feedback from 

managers if the managers have stricter risk acceptance. Also, the mean of unsafe behavior in 

each level of feedback frequency varies significantly and exhibits meaningful differences 

(M(High) = 0.326, M(Medium) = 0.342, M(Low) = 0.358, H = 58.60, p < 1.94 ×e
−14

), although 

the mean differences are less than the previous intervention. More frequent feedback makes 
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