LUITITITII LTI I T I i 111118 11111881111] [47.000]
01010000100000101100000010110000110010100000010 16.121

10001000001111000011100100000010000100011100001 15.181
10101000100010010011010000001011010000010100001 15.651
00010000010101001100101000000100101 101000001100 15.651
00010000000100000110000010101001100001100101110 18.001
10000110101011110000101101000100000110000000001 13.301
100011101000001106001010011001010010000000100001 13.301
01010001000101000100001100000100001101001011000 18.001
00110001001100001010000010001010100101001101010 15.651

10001110110001110100000100100000011010010000001 Wy 15.651
0000111011000011100001001110100010000010000001 1 w, 14.241

00100001000000000110101100000001001101001001000| x | : |=]17.061
01110000101000101000001101001010000101000100010 Wiz 15.651
10001110010100010101100000100001001000111001101 15.651
00011010000111100001010011001000100000100010011 14.241
11000000000000000100101100110100000101001000000 17.061
00000000101001101010000101001110010000000000010 15.651
10011111010100010100100000100001101000110011101 15.651
00011011011110110101010010000100000001100011111 10.481
11000100000000001000101100010000110110001000000 20.821
0100000000100010101001 11010001 10010000000000010 20.821
00011101010010010000000010101000101001100111101 10.481
00010001111110100001010011000100001001 100001110 10.951
| 1110111000000000010000110011101001000001 1000000 | 120.35 1}

Figure 7-3. Alternative representation of Equation (6-3) and the first 24 equations
in Figure 4-5.

differentials are set to zero, as in Equations (7-7) and (7-8). Table 7-15 presents the so-
lution of Equation (7-16) found by using the first procedural algorithm in Figure 7-2
(using all scenarios). Table 7-16 presents the solution of Equation (7-16) found by using
the second procedural algorithm in Figure 7-2 (maximizing use of meteorology out-

fooks). Checks reveal that Zw,z < 2n for both procedural algorithms; therefore, the

Table 7-13. Outlook weights maximizing use of meteorology outlooks in Figure
7-3 for the Lake Superior supply outlook example.

Index, i Weight, w; Index, i Weight, w; Index, i Weight, w;
(1) @ ) @) ) ©)
1 1.060475 17 1.766160 33 2.120593
2 2.768731 18 1.666037 34 2.734721
3 0 19 2.971981 35 1.360656
4 0 20 0.372594 36 0.453465
5 0 21 0.573141 37 1.114288
6 0.778769 22 3.028104 38 0.848485
7 0.743021 23 2.363683 39 0
8 0 24 2.020468 40 0.153503
9 0 25 0.086473 41 2.099952
10 0.007176 26 1.870353 42 1.595679
11 0 27 1.964278 43 0.351949
12 1.744236 28 0.966552 44 0
13 0 29 0.942909 45 0.424029
14 2.047606 30 0.275731 46 0.933164
15 0 31 0.087902 47 0
16 0 32 2.703132
98
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Table 7-14. September 15, 1998, Lake Superior probabilistic outlook of net
basin supply (mm) maximizing use of meteorology outlooks.

Month Nonexceedance quantiles
3% | 10% | 20% | 30% | 50% | 70% | 80%| 90% ] 97%

GO 1 @A | H GG |0 1@ | O |J0
Sep98 |-21.1 |-139|-339 238 [31.7 |432 |522 |[573 |748
Oct98 |-33.6 |-2.10 | 11.2 |18.7 [242 |547 |68.1 (932 |112
Nov98 |-61.5|-249 [-22.7|-199 |-113 [ 19.0 [24.1 |33.8 |64.1
Dec98 | -77.6 | -53.0 | -43.1 | -39.6 | -34.2 [ -23.0 |-15.8 {-10.6 [ 4.87
Jan99 | -67.3 | -65.0 [ -53.1 | -49.0 | -36.4 |-29.6 | -21.2 | -3.87 | -1.93
Feb99 |-40.9 (-38.9 |-31.1 |-28.1 [{-20.8 |-9.11 |-5.00 [ 12.5 |33.3
Mar99 |[-28.9 |-18.5 | -8.15 |-4.34 [ 11.7 |272 |415 [529 |{66.1
Apr99 1689 713 838 [953 |105 122 135 155 161
May 99 |[97.8 | 105 120 133 172 195 1212 [233 |243
Jun99 | 103 108 117 129 143 165 175 197 ] 201
Jul99 | 716 |83.0 |956 | 107 118 139 148 175 | 201
Aug99 (410 |466 [534 (663 |934 |113 123 135 147
Sep99 | -12.7 {041 338 [50.2 |649 |93.6 |107 113 156

solutions in both cases represent minimums. (All computations are with probabilities,
both reference quantiles and forecasts, significant to three digits after the decimal point.)

The first procedural algorithm matches Equations (4-9a) through (4-9g) while using
all of the meteorology time series segments from 1948 to 1994; see Table 7-15. The
second procedural algorithm matches Equations (4-9a) through (4-9h) but has zero
weights for years 1952, 1953, 1957, 1963, 1972, 1974, 1982, and 1994; see Table 7-16.
(It is interesting to note that none of the years omitted are La Nifia years in Table 4-2.)

Table 7-15. Outlook weights using all meteorology time series segments for
Equation (7-16) for the La Nifia Lake Superior supply outlook

example.
Index, i Weight, w; Index, i Weight, w; Index, i Weight, w;
1) (2) 3) G)) ) (6)
1 0.259214 17 2.167816 33 0.565279
2 1.780569 18 0.259214 34 1.314670
3 0.945037 19 1.468592 35 0.259214
4 1.264503 20 0.644569 36 0.945037
5 0.259214 21 0.964035 37 0.091891
6 0.259214 22 1.081345 38 0.945037
7 0.259214 23 1.780569 39 0.964035
8 0.565279 24 2.013894 40 0.259214
9 1.729262 25 0.245813 41 0.093670
10 0.259214 26 2.718715 42 0.945037
11 2.167816 27 0.259214 43 1.116178
12 0.413135 28 0.796713 44 0.413135
13 0.796713 29 1.883183 45 0.964035
14 1.030038 30 2.019491 46 2.167816
15 2.01389%4 31 2.167816 47 0.259214
16 0.259214 32 0.964035
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Table 7-16. Outlook weights maximizing use of meteorology event probabilities
for Equation (7-16) for the La Nifia Lake Superior supply outlook

example.
Index, i Weight, w; Index, i Weight, w; Index, i Weight, w;
(M) @ 3) @ ) (6)
| 0.599708 17 2.209499 33 0.595273
2 1.798767 18 0.599708 34 1.244683
3 1.287485 19 1.495376 35 0
4 1.309397 20 0.651246 36 1.287485
5 0 21 1.340538 37 0.322668
6 0 22 1.084643 38 0.620105
7 0.599708 23 1.798767 39 0.673159
8 0.595273 24 1.958807 40 0.599708
9 1.937663 25 0 41 0.161108
10 0 26 2.699638 42 0.620105
11 2.209499 27 0 43 1.085412
12 0.850400 28 1.063499 44 0.183021
13 0.396120 29 1.520976 45 0.673159
14 1.223539 30 1.985514 46 2.209499
15 1.958807 31 2.209499 47 0
16 0 32 1.340538

Using either set of weights allows probabilistic hydrology outlooks for Lake Superior
net basin supply to be built from Table 7-12, in the way they were built for Table 7-14 in
the previous example. See Exercise A2-7 in Appendix 2 for this example, which also
illustrates the setting of arbitrary user-defined (non-agency) probabilities such as Equa-
tions (4-9).

ORDERING PRIORITIES

There are several practical ways for ordering priorities. First, a practitioner would use
meteorology probability forecasts of appropriate lead and length for the derivative fore-
casts at hand. Thus, one would place meteorology forecasts over the next few days at
higher priority than a 1-month forecast if one desired the derivative hydrology forecast
at the end of the week. Likewise, if a lake level outlook over the next 6 months was to
be made, then the 3-month meteorology forecasts beginning with the present month, the
following month, and the month after would be more important than the second-week
meteorology forecast. Another consideration for the practitioner is to place the most
important variables first, reflecting his or her goals or purposes. For example, February
air temperatures may be much more important for snowmelt events than June-July-
August precipitation. Users may also assign priorities according to their confidence in
the meteorology outlooks. For example, an older meteorology forecast may have a
much lower priority to the user than a more recent one. Or one agency may have a bet-
ter forecast success rate in the user’s application area than another agency; this too can
be reflected in the user’s priority listing.

Very often, priorities do not change much in day-to-day forecasting activities. A lot
of thought may go into selecting a reasonable set of priorities for the agency forecasts
that are used to make a derivative hydrology outlook. As long as the meteorological
outlooks that are being used are not removed (even though they are allowed to change)
from day to day, their priorities may remain unchanged. It is necessary only to recalcu-
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late the weights when the meteorology forecasts or their priorities change. The same set
of weights can be used in day-to-day updated hydrology forecasts in the interim, re-
flecting only updated initial conditions used in the model simulations.

ADDITIONAL METHODOLOGY CONSIDERATIONS
Formulating an optimization, as described in this chapter, allows for a general approach
in determining weights in the face of multiple outlooks. However, this formulation also
involves arbitrary choices, the largest of which is the selection of a relevant objective
function. As mentioned earlier, other measures of relevance of the weights to a goal are
possible and could require reformulating the solution methodology. An earlier ap-
proach, not described in this book, was to minimize the sum of squared differences be-
tween the relative frequencies associated with the bivariate distribution of precipitation
and temperature before and after application of the weights. The goal was to make the
resulting joint distribution as similar as possible to that observed historically while
making the marginal distributions match the climate outlooks. Unfortunately, that
method was intractable for consideration of more than one climate outlook. Alternative
formulations that use linear measures for comparing alternative solutions to determine
which is “best” are described in Chapter 10.

Most significantly, the method allows joint consideration of multiple probabilistic
meteorology outlooks of event probabilities. The next chapter extends the methodology
to also include probabilistic meteorology outlooks of most-probable events.
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Chapter 8
MIXING MOST-PROBABLE METEOROLOGY OUTLOOKS

Chapters 6 and 7 discussed restructuring of the operational hydrology future scenarios
sample to match forecast event probabilities as given, for example, in the National Oce-
anic and Atmospheric Administration’s (NOAA’s) monthly Climate Outlooks or its 8—
14 day outlook. However, that chapter did not address matching most-probable event
forecasts such as the NOAA 6-10 day outlook or the Environment Canada (EC) 1-
month and 3-month outlooks. This chapter extends the approach to mix all probabilistic
meteorology outlooks to generate hydrology outlooks.

MATCHING MOST-PROBABLE EVENTS

Consider matching most-probable event forecasts such as are available in NOAA’s 6-10
day outlooks for average air temperature and total precipitation, EC’s monthly outlooks
for average air temperature, or EC’s seasonal and extended seasonal outlooks for aver-
age air temperature and total precipitation. Most-probable event forecasts are a special
case of a more general category of probability statements. Generally, r + 1 intervals for
a variable’s values are set by defining interval limits, z; < z, -+ < z,. The general

form of the probability statement in which a most-probable event forecast can be cast is
that the jth event (interval) has a probability in excess of a specified value; the probabil-
ity can be written in terms of the relative frequencies to be matched:

Plzpy < X <z;] > ¢, (8-1)

where X may be average air temperature or total precipitation and ¢, is a probability

limit. z, = —0 and z,,, = +eo are understood and for these cases, Equation (8-1) be-
comes

13[20 <X < zl] = f’[X < z,] > ¢ (8-2a)
Plz, < X <2,,]= P[X > z] >0, (8-2b)

[In the NOAA forecast of most-probable air temperature and precipitation events and in
the EC forecasts of most-probable precipitation events, z, is defined as the y, quantile

(&, ) estimated from the 1961-90 period. In the EC forecasts of most-probable air tem-
perature events, the quantiles are estimated from the 1963-93 period. In general:

13[X < ék] =y, l1<k<r (8-3)
where 7, < 7, < .- < 7, and ¢, is defined in terms of the quantile probabilities:
O =Y — Yiq 1 <k <r+l (8-4)

where y, = 0 and 7,,; = 1. For the NOAA 6-10 day most-probable event temperature
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forecast, =4, y, =0.1, y, =03, 13, =0.7,and ¥, =09 (¢ =0.1, ¢, =0.2, ¢ =04,
¢, = 0.2, and ¢ = 0.1); for the NOAA 6-10 day most-probable event precipitation fore-
cast and all of the EC most-probable event temperature and precipitation forecasts, » = 2,
v, =1/3,and ¥, =2/3 (¢ = ¢, = ¢, = 1/3). However, the more general definitions of
z, and @, are used in this chapter to allow for other outlooks that may be more broadly

defined than either of the present NOAA or EC most-probable event forecasts.]

Many most-probable event forecasts are accompanied by the implicit assumption
that only the most-probable interval has forecast probability exceeding its reference
probability. Equation (8-1) would then become:

ﬁ[zj_l < X < zj] > ¢ (8-5a)
Plzy, < X < z] < ¢ k=1..,r+l; k#j (8-5b)

Alternatively, Equations (8-5) can be written in terms of the complement for the first
event as:

ﬁ[not(zj_l <X <z )} < 1-¢, (8-62)

Plzy, < X < z] £ ¢ k=1.,r+l; k#j (8-6b)

If the user does not wish to make the assumption, then the » inequalities in Equations (8-
6b) can be omitted.

Weights are determined by matching relative frequencies in the operational hydrol-

ogy sample to the most-probable interval forecast of Equations (8-6) [as was done in
Chapter 6 to replace Equation (6-1) with Equation (6-2) by using Equation (5-8)]:

1

= > w, < 1-9¢, (8-7a)
iinot(zI_l <x £ Zj)
1 > w, < ¢  k=1L..r+l; k# j (8-7b)

n ilzk_l < xi <z

Alternatively, write Equations (8-7) as follows:
2EM < e (8-82)
i=1
zak’iwi < g k=1 ..,r+]; kzj (8-8b)
i=1

where the ¢ ; are defined, as they were for Equation (6-10), as 1 or 0, corresponding to
the inclusion or exclusion, respectively, of each variable in the respective appropriate
sets of Equations (8-7), and where e, corresponds to the probability limits specified in
the most-probable event forecast [e; = n(l - ¢j) and ¢, = n¢,, k # j]. Ther+1

inequalities in Equations (8-8) represent one most-probable event forecast; if there are
multiple most-probable event forecasts (from different agencies, for different periods
and lags, and for different variables), represent them by the p + g inequalities:
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Zak,iwi < g k=1 ..,p (8-9a)
=

Zak,iwi < e k= p+l, ..., ptg (8-9b)
i=l

where p = the total number of strictly-less-than constraints and ¢ = the total number of
less-than-or-equal-to constraints to be considered. Note that while Equations (8-9) may
refer to different variables over different periods with different lengths and lag times, the
equations are written in terms of a single set of weights (w,, i =1, ..., n) as was done for

Equation (6-10).

MIXING PROBABILISTIC METEOROLOGY OUTLOOKS

By adding the constraints corresponding to most-probable event forecasts in Equations
(8-9) to those of the event probability forecasts in Equation (6-10) and the requirement
of Equation (6-3), the following set of equations is formed to be to solved simultane-
ously:

YW = g k=1 .., m (8-10a)
i=l
Saw < e k=m+l, ..., m+p (8-10b)
i=1
Zak,,-w,- < g k=m+p+]l, ..., m+p+gq (8-10¢)
i=]

Again defining an optimization problem and solving by searching for an “optimum” so-
lution, as in Equations (7-5), the optimizatton becomes:

min Zn:(w, - 1)2 subject to (8-11a)
i=l
zn;ak,iwi = ¢ k=1 ... m (8-11b)
=
zn:ak,iwi < g k=m+l, ..., m+p (8-11c)
i
Zn:ak,,-w,- < g k =m+p+], ..., m+p+gq (8-11d)
=1

The solution to Equations (8-11) may give positive, zero, or negative weights, but only
nonnegative weights make physical sense. Again, two procedural algorithms are used
for finding nonnegative weights without adding additional constraints to Equations (8-
11), so that the solution is analytically tractable. These algorithms repeatedly eliminate
the lowest-priority equation or inequality in Equations (8-11b), (8-11c), and (8-11d) un-
til nonnegative weights are obtained. As before, the first algorithm guarantees that all
scenarios in the operational hydrology sample are used and the second maximizes the
number of equations or inequalities (meteorology outlooks) used.
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Equations (8-11) are equivalent to:

min Y (w, - l)2 subject to (8-12a)
i=1
Zak’iwi = g k=1 .., m (8-12b)
i=1
Za’k,,-wi + Wokem = & k=m+l, ..., m+p+gq (8-12¢)
i=1
w, > 0 i=n+l, ..., n+p (8-12d)
w, 2 0 i =n+p+l, ..., n+p+g (8-12¢)

where the w,, (i=n+1, ..., n+ p+ q) are “slack” variables added to change considera-

tion of an inequality constraint to consideration of an equality constraint in the optimi-
zation. This, in turn, is equivalent to:

min Y (w, — 1)° subject to (8-13a)
=l
n+p+q

z oW, = g k=1.., m+p+gq (8-13b)
i=1

w, > 0 i =n+l, ..., n+p (8-13¢)

w, 2 0 i =n+p+l, ..., n+p+g (8-13d)

where the additional coefficients are defined as follows:

o, =0 k=1....m i=n+l,...,n+p+gq (8-14a)
o, =1 k=m+l..,m+p+q i=n+k-m (8-14b)
o, =0 k=m+1,....m+p+q i>n i# n+k-m (8-14c)
If the non-negativity constraints (w;>0, i=n+1, ..., n+p and w;>0, i=
n+p+1,..,n+p+q)are ignored for now, Equations (8-13) become:
min Y (w, — 1)2 subject to (8-15a)
=1
n+p+q
doaw = g k=1, .., mtp+q (8-15b)

i=]

which is similar to Equations (7-5) and may be solved as before (Croley 1996, 1997a) by
defining the Lagrangian (Hillier and Lieberman 1969, pp. 603-08),

n ) m+p+q n+ptq
L=>w-1" - ) lk[ > W - ekJ (8-16)
=1 p= i1

where 4, = the unit penalty of violating the kth constraint in the optimization, and by
setting the first derivatives with respect to each variable to zero:
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a L m+p+q

= 2w -1) - D Aoyp,= 0 i=1L..,n (8-17a)
k=1

aw;

aL m+p+q .

- = - z 20, ; =0 i=n+l...,n+tp+tq (8-17b)
; k=t

aL n+p+q

= - - dYoaw + g =0 k=1..,mtp+q (8-17¢)
k i=1

This is a set of necessary but not sufficient conditions for the minimization of Equation
(8-16) or the problem of Equations (8-15). The solution represents a “critical” point and
must be checked further to identify it as either a minimum or a maximum. Equations (8-
17) are linear and solvable via the Gauss-Jordan method of elimination because there are
m + n+2p + 2q equations in m + n + 2p + 2¢g unknowns (same number of equations and
variables). For this problem where one of the equations in Equations (6-10) and (8-11)
is Equation (6-3), the solution of Equations (8-17) represents the minimum if

ZWiz < 2n and the maximum if ZW,Z > 2n (see Appendix 3). Note that these are

the same sufficiency conditions as for Equations (7-7). Equations (8-17) can be written
in vector form as in Figure 8-1.

The solution of Equations (8-15) may give positive, zero, or negative weights and
slack variables, but only nonnegative or strictly positive weights (either w; > 0 or w; >
0, i=1,...,n)andslack variables (w; > 0, i=n+1,...,n+pandw; > 0, i=n+p
+ 1, ..., n + p + q) make physical sense, and the optimization must be further con-
strained. Two cases arise here:

w, > 0 i=1..,n (8-18a)

w, > 0 i=n+l, ..., n+p (8-18b)

w, 2 0 i=n+p+l, ..., n+p+gq (8-18c)
and

w, 2 i=1..,n (8-19a)

w, > i=n+l, ..., n+p (8-19b)

w, 2 i=n+p+l, ..., n+p+g (8-19¢)

In both cases, there is a mixture of strictly positive (w; > 0) and simply nonnegative
(w; > 0) weights and slack variables for the optimization. These additional constraints
can result in infeasibility (meaning there is no solution), and equations must be elimi-
nated from Equations (8-15) to allow a feasible solution. To facilitate this, the engineer
or hydrologist must prioritize the probabilistic meteorology outlook equations [and,
hence, the equations in Equations (8-15)] so that the least important ones (lowest prior-
ity) can be eliminated first. The equation in Equations (8-15b) corresponding to Equa-
tion (6-3) should always be given top priority.

A procedural algorithm of successive optimizations is depicted in Figure 8-2; it pre-
serves as many of the probability equations as possible while yielding results identical to
Figure 7-2 when no slack variables are present (Croley 1997b). In Figure 8-2, if simple
nonnegativity conditions would be violated in an optimization, even though other posi-
tivity conditions may also be violated, the procedural algorithm adds a zero constraint
(w; = 0) for each negative variable (w; < 0), as long as the resulting equation set stiil
represents a nonempty space, and it solves the optimization again. If the resulting equa-
tion set would represent an empty solution space, then the algorithm eliminates all ear-
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