
encountered where convection dominates the flow response. Th e problem arises
in representing a  convective phenomenon wit h a static mesh.

4.3.3.1 Problem Definition

Mathematically, th e proble m i s a  consequence o f instability du e t o con-
vective domination o f the firs t orde r hyperbolic equation. Th e problem can
be circumvented b y applyin g an y o f the followin g methods : (a ) metho d of
characteristics (Huyakor n and Finder 1983), (b ) Eulerian-Lagrangian moving
coordinates (Zhan g et al. 1993), (c) function transformatio n (Bai et al. 1994d),
and (d ) random walk method (Bea r and Verruij t 1987). Th e common natur e
of thes e method s i s t o eliminat e th e convective ter m an d t o transfor m th e
transport equation into a  more stable parabolic typ e of equation. Solutio n of
the dispersion-convection equation [e.g., Eq. (4.32)] , is particularly challenging
as Peclet number, indexing the ratio of convective to diffusiv e fluxes, increases.
At high Peclet numbers , one is usually forced t o choose between accepting th e
presence of nonphysical oscillations withi n the solution or sufferin g unwanted
numerical dispersion. O f key importance is awareness of the changing natur e
of the governing equation. Wher e dispersion dominates [e.g. , Eq. (4.205)] , th e
equation i s parabolic and causes no particular proble m in numerical solution.
Where convection dominates [e.g. , Eq. (4.204)] , the behavior is analogous to a
first-order hyperbolic partial differentia l equatio n that exhibits a  fronta l char-
acter and creates difficulties i n its numerical solution.

Applying the dimensionless concentration and changing only the definitio n
for th e dimensionless time  td  i n Eq. (4.35 ) as

Eq. (4.36 ) can be reformulated as

with the following initial an d boundary conditions:

Any attempts to solve Eq. (4.208) for a large equivalent Peclet number (EPN) ,
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Temporal Treatment

Leismann and Frind (1989) attempted to achieve matrix symmetry by plac-
ing th e convective ter m i n th e previou s tim e level i n tim e marching . Th e
resulting numerica l error s are minimized by introducin g an artificia l disper-
sion term and b y optimal time weighting of all terms on the basis o f a Taylor
expansion of the governing equation.

Sudicky (1989) indicated tha t imprope r selection of a time step size could
lead to artificia l smearing (i.e., numerical dispersion) or oscillations in the so-
lution. H e used Laplace transformatio n t o eliminate th e temporal derivative

4.3.3.2 Alternative Methodologies

The mos t successfu l techniqu e i n eliminatin g numerica l oscillations may,
however, be attributed to the application of the upwinding method (Christi e
et al . 1976) modified fro m th e finit e differenc e iteration . Th e metho d i s also
referred t o a s upstrea m weightin g (Huyakor n and Finde r 1983). However ,
despite th e utilit y o f this method i n reducing spurious oscillations, excessive
smearing or numerical dispersion is arbitraril y added t o th e solutions. Noor -
ishad e t al . (1992) provided a review of the effec t o f the upwind method .

Results for higher dimensional elements in two and three dimensions, where
low element continuity is maintained, results in no net improvement (Heinrich
et al. 1977). Alternatively, higher order elements using cubic or bicubic Hermi-
tian interpolatin g functions , togethe r with collocation finite element methods ,
may concurrentl y minimiz e oscillation an d smearin g (Mohse n 1984; Finde r
and Shapir o 1979; van Genuchten and Finde r 1977). However , the computa -
tional costs incurred in using higher order elements are high and formulation
of the proble m ofte n turn s out t o be cumbersome.

By examining Eq. (4.208) , it i s known that the first term on the left-han d
side of the equatio n i s symmetric in nature , whic h generally does not induc e
stability problems in numerical schemes. However , the asymmetr y of the nu -
merical formulation , which is reported t o cause stability problems , i s due t o
the existence of the othe r two terms. I n consequence, alternative methodolo-
gies for minimizing numerical dispersion and oscillation are frequentl y divided
into two groups according to the negative impact du e to the existence of: (a)
the firs t ter m o n the right-han d side of Eq. (4.208) , an d (b ) the second ter m
on the left-han d side of Eq. (4.208) , respectively. Th e forme r i s related to th e
temporal treatment , while the latter is associated with the spatial treatment.
The latte r metho d i s more popular becaus e i t i s more effectiv e i n reducin g
the numerical dispersion and oscillation. Occasionally, methods are developed
for reducin g the negative impacts o f both terms in Eq. (4.208 ) b y combined
temporal and spatial treatments .

7*, by any numerical technique lead to oscillatory results (Gladwel l and Wait
1979).
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term fro m th e dispersion-convection equation an d solved the ordinar y differ -
ential equation i n the Laplac e domain using the conventional Galerkin finit e
element technique.

Spatial Treatment

In general, the spatia l treatmen t i s divided into two groups: moving coor-
dinate methods and functio n transformatio n methods.

Moving Coordinate  Methods:  Thi s method converts a  dispersion-convection
equation into a hyperbolic-type equation in order to achieve numerical stability
(Zhang e t al . 1993). Assumin g that th e mediu m is full y saturate d an d tha t
retardation i s negligible, th e governin g equation proposed b y Zhan g et al .
(1993) collapses to the same format as in Eq. (4.208) . Th e classical dispersion-
convection transpor t equatio n i s evaluated i n th e fixed Eulerian coordinat e
system.

Using the concep t o f the tota l derivative (o r Lagrangian derivative), one
has

Substituting Eq. (4.210 ) into Eq. (4.208) , a  parabolic-like equation is formed :

The concentration c  in Eq. (4.211) no longer represents th e concentration
at a  point in space and in time, but rathe r the concentration of a fluid particle
moving along the characteristic pat h described by the following equation:

This approach i s similar i n concept an d procedur e to th e "rando m wal k
method" i n Section 4.2. 4 describing stochastic processes, however, with a dif-
ferent explanation . I n Eq . (4.211) , a  Lagrangian moving coordinate system,
defined i n Eq. (4.210) , i s used t o replace the traditiona l fixed Eulerian coor-
dinate system. A s noted b y Zhang et al . (1993) , the Lagrangia n formulation
eliminates the convective term so the governing equation takes on a parabolic
format tha t can be solved more efficiently wit h a finite element method. Th e
final results are converted back to the Eulerian coordinate system through Eq.
(4.210).

In othe r numerica l schemes relate d t o th e movin g coordinate method ,
"adaptive gri d method " (H u an d Schiesser 1981), "adaptiv e characteristic s
method" (Ouyan g and Elsworth 1989) and "movin g grid method" (Gottard i
and Venutell i 1994) are al l similar methods  t o refin e th e mes h a t th e stee p

158

https://www.civilenghub.com/ASCE/184921214/Coupled-Processes-in-Subsurface-Deformation-Flow-and-Transport?src=spdf


concentration fron t s o as to minimiz e dispersion an d oscillation, i n compari-
son with traditiona l schemes.

Function Transformation  Method:  Functiona l transformation  i s a n effectiv e
way to convert a parabolic-hyperbolic type equation into a more stable parabolic-
type equation . However , the trade-of f o f this transformatio n i s the resul t of
solving a more challenging time-dependent boundar y problem.

• Method  of  Ogata  and  Banks

Ogata and Banks (1961) derived an analytical solution of the classic dis-
persion an d convection model of one-dimensional transpor t usin g func -
tion transformation . This technique has been adopted in solving convection-
dominated transpor t equations .

Assuming that the concentration is a function of an exponential function ,
as (Ogat a and Bank s 1961)

where A0(x, t) is a transformation function , then substituting Eq . (4.213)
into Eq. (4.32) , gives a parabolic-type equation a s

with the following initia l and boundar y conditions:

It may be noted tha t the concentration a t th e inlet boundar y becomes
time-dependent. Applyin g Duhamel's theorem (Carslaw and Jaeger 1959]
and Laplac e transform s to Eqs. (4.214 ) an d (4.215) , th e following well-
known analytical solution is obtained afte r a  variety of clever but tediou s
analytical maneuvers:

where "erfc" i s the complementary error function , which is related to th e
error functio n "erf" throug h erfc(x ) = 1 - erf(x) .
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• Method  of  Guymon

In solving the convection-dominated transpor t equation , the presence of
numerical oscillations was first recognized by Price et al . (1968). To cir-
cumvent this difficulty, Guymo n (1970) applied th e following functional
transformation :

where hg(x,t) i s also a transformatio n function .

Substituting Eq . (4.217 ) int o (4.32) , yields

In Eq. (4.218), the first-order derivative ter m wit h respect t o x , which
is problematic in representing convection-dominated transport , i s elimi-
nated.

The initial and boundar y conditions are transformed to

where GI  i s the concentratio n value at th e outlet .

For zer o concentration a t th e outlet , th e outle t boundar y conditio n is
simplified to A p = 0 . As a result, the boundary conditions become time-
independent. Unde r such conditions, Guymon's method i s simpler tha n
Ogata an d Banks ' method . However , Guymon's method i s no t effec -
tive in reducing numerical instability a t higher Peclet numbers (Guymon
1970).

• Method  of  Bai et  al.

The problems associated wit h the convection-dominated transpor t equa -
tion are , i n general , attribute d t o th e dominanc e o f convection over
dispersion. I n general , thi s proble m exists fo r bot h stead y stat e an d
transient behavior . Ba i et al . (1994d) proposed the following procedure.

For steady state transport , Eq . (4.208 ) reduces t o

Assuming

160

https://www.civilenghub.com/ASCE/184921214/Coupled-Processes-in-Subsurface-Deformation-Flow-and-Transport?src=spdf


161

where A&(x ) is an arbitrar y function . Eq . (4.221 ) enables A & to be define d
from

where A £ i s the functio n A & a t it s initia l value. Similarly , an analo g t o
Eq. (4.220 ) may be defined a s

where A £ i s another arbitrar y function .

From the development of Eqs. (4.221) , (4.222) , and (4.223) , it is amenable
to re-write Eq. (4.220 ) as

Eq. (4.224 ) yields the exact for m of Eq. (4.220) . Since the boundar y and
initial conditions are unchanged fro m Eq . (4.209) , analytical solution of
(4.224) ma y be easily obtained fo r the prescribed outle t concentratio n
boundary condition as

For modeling steady state solute transport , the method developed by Bai
et al. (1994d) provided more accurate solution in comparison with the an-
alytical solution (van Genuchten 1982) than th e Galerki n finite element
method (Fletche r 1984) and th e upwin d weighting method (Huyakor n
and Finder 1983), even at hig h Peclet numbers .
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5.2 LAPLAC E TRANSFOR M

As previously demonstrated, Laplac e transform is a powerful and broadly used
method fo r the solution o f partial differentia l equation s associated wit h tran -

Chapter 5

ANALYTICAL SOLUTION

5.1 NTRODUCTION

A mathematical mode l is a replica o f some real-world object o r system. I t i s
an attempt to take our understanding o f the conceptual process and translat e
it into mathematical terms . Ther e are many basic ways to solve mathematica l
equations. Analytica l methods represent classical approaches t o solve the par-
ticular system equations , sometimes i n closed form , an d sometimes requiring
that th e final simplified equation s ar e solved numerically. Eve n though typi -
cally constrained t o reduced spatia l dimensions , simple boundar y geometries
and initia l conditions, analytical method s serve as effective means for prelimi-
nary simulation, sensitivity analysis, and benchmark study for numerical vali-
dations, du e primarily to their convenience and ease of application. I n reality,
however, closed for m analytical solutions ar e difficul t t o obtain , an d therefor e
are rar e i n thei r applicatio n t o coupled problems . However , semi-analytica l
solutions i n which numerical inversion i s used ar e usefu l an d popula r i n th e
solution o f partial differentia l equations .

Many solutions have already bee n presented usin g analytical means , such
as functio n transformations . However , thes e solutions were provided only as
illustrations o f some basic o r well-known approaches an d correspondin g re -
sults. I n contrast , thi s chapte r introduce s som e popula r analytica l solutio n
techniques relevant t o solving coupled processes. Specifically , thre e differen t
function transformation techniques, togethe r wit h a method o f differential op-
erators, ar e presented.
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sient fluid flow and transpor t phenomena . Th e technique removes the tim e
derivative throug h transformation , renderin g partia l differentia l equations a s
ordinary differentia l equations . Th e predominant application of Laplace trans-
forms i s in the solutio n of decoupled o r partially decoupled systems.

5.2.1 Flo w

For simulatio n usin g th e dual-porosit y concept , Warre n an d Root' s (1963 )
model may be solved by Laplace transform s only because th e fluid pressures
in the matri x and the fracture s are decoupled in Laplace space. Th e following
evaluations are limited to fluid flow in nondeformable fractured porous media.

5.2.1.1 Solution Method

As an alternative, Barenblat t et al. (1960, 1990) proposed a  more complete
dual-porosity formulatio n than thos e expressed i n Chapte r 3  by Eqs. (3.83)
and (3.84) through considering the cross-phase storag e interactio n

where cJ2 and c^ are the cross-coefficients. Th e second terms on the right-hand
side of Eqs. (5.1) and (5.2 ) were claimed to have an insignificant impact on fluid
mass exchange, and therefore were omitted i n the final formulation (Barenblat t
et al . 1990) , a s show n in Eqs . (3.83 ) an d (3.84 ) (Chapte r 3) . However , i t
is understoo d tha t th e formulatio n o f Eqs. (5.1 ) an d (5.2 ) is based o n th e
phenomenology of the system . A  more rigorously derived counterpar t t o thi s
equation, represented by Eqs. (3.124) and (3.125), can be rewritten in a similar
form t o Eqs. (5.1 ) and (5.2 ) as

where #1, 52, <?3 , and #4 correspond to c* 1? cJ 2, <%i  an d c^ , respectively, define d
in Eq. (3.137) (Chapte r 3) .

For convenience of comparison, the Warre n and Roo t model in Chapter 3
is rewritten using terms represented i n the following two equations, assumin g
the matrix-fractur e flow maintains a  quasi-steady state , as
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where the variables and constants hav e been defined previously.
In contrast , fo r the mode l represented b y Eqs . (5.3 ) an d (5.4 ) using th e

concept o f quasi-steady matri x flow Eq. (5.3 ) should reduce to

Assuming the followin g dimensionless quantitie s fo r the quasi-steady ma -
trix flow :

where hr i s the reservoir thickness, po is the initia l reservoir pressure, q  is the
flow rate at th e well, and rw i s the wellbore radius. Fo r a block-type matrix ,
F = [60&i]/[//(s*) 2] where s* is the average fractur e spacing.

More specifically,

where Kf r, Ks and Kf are the bulk moduli of fractures, solid grain, and fluid,
respectively. Substitutin g th e dimensionless term s given in Eq. (5.8) into th e
governing equations (5.7 ) and (5.4) , the ne w formulation for the radial flow is
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