encountered where convection dominates the flow response. The problem arises
in representing a convective phenomenon with a static mesh.

4.3.3.1 Problem Definition

Mathematically, the problem is a consequence of instability due to con-
vective domination of the first order hyperbolic equation. The problem can
be circumvented by applying any of the following methods: (a) method of
characteristics (Huyakorn and Pinder 1983), (b) Eulerian-Lagrangian moving
coordinates (Zhang et al. 1993), (c) function transformation (Bai et al. 1994d),
and (d) random walk method (Bear and Verruijt 1987). The common nature
of these methods is to eliminate the convective term and to transform the
transport equation into a more stable parabolic type of equation. Solution of
the dispersion-convection equation [e.g., Eq. (4.32)], is particularly challenging
as Peclet number, indexing the ratio of convective to diffusive fluxes, increases.
At high Peclet numbers, one is usually forced to choose between accepting the
presence of nonphysical oscillations within the solution or suffering unwanted
numerical dispersion. Of key importance is awareness of the changing nature
of the governing equation. Where dispersion dominates [e.g., Eq. (4.205)], the
equation is parabolic and causes no particular problem in numerical solution.
Where convection dominates [e.g., Eq. (4.204)], the behavior is analogous to a
first-order hyperbolic partial differential equation that exhibits a frontal char-
acter and creates difficulties in its numerical solution.

Applying the dimensionless concentration and changing only the definition
for the dimensionless time ¢4 in Eq. (4.35) as

o, = Sz,
47 ¢(0,¢)
(4.207)
t* — Dt
d F?
Eq. (4.36) can be reformulated as
d%c dc  Oc
— =Y = 4.208
ox? 7 Ozy Ot} ( )
with the following initial and boundary conditions:
C(CL‘d, )_
(L* td) =0  (for prescribed concentration) (4.209)

8_0%%3) =0 (for prescribed flux)

Any attempts to solve Eq. (4.208) for a large equivalent Peclet number (EPN),
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~*, by any numerical technique lead to oscillatory results (Gladwell and Wait
1979).

4.3.3.2 Alternative Methodologies

The most successful technique in eliminating numerical oscillations may,
however, be attributed to the application of the upwinding method (Christie
et al. 1976) modified from the finite difference iteration. The method is also
referred to as upstream weighting (Huyakorn and Pinder 1983). However,
despite the utility of this method in reducing spurious oscillations, excessive
smearing or numerical dispersion is arbitrarily added to the solutions. Noor-
ishad et al. (1992) provided a review of the effect of the upwind method.

Results for higher dimensional elements in two and three dimensions, where
low element continuity is maintained, results in no net improvement (Heinrich
et al. 1977). Alternatively, higher order elements using cubic or bicubic Hermi-
tian interpolating functions, together with collocation finite element methods,
may concurrently minimize oscillation and smearing (Mohsen 1984; Pinder
and Shapiro 1979; van Genuchten and Pinder 1977). However, the computa-
tional costs incurred in using higher order elements are high and formulation
of the problem often turns out to be cumbersome.

By examining Eq. (4.208), it is known that the first term on the left-hand
side of the equation is symmetric in nature, which generally does not induce
stability problems in numerical schemes. However, the asymmetry of the nu-
merical formulation, which is reported to cause stability problems, is due to
the existence of the other two terms. In consequence, alternative methodolo-
gies for minimizing numerical dispersion and oscillation are frequently divided
into two groups according to the negative impact due to the existence of: (a)
the first term on the right-hand side of Eq. (4.208), and (b) the second term
on the left-hand side of Eq. (4.208), respectively. The former is related to the
temporal treatment, while the latter is associated with the spatial treatment.
The latter method is more popular because it is more effective in reducing
the numerical dispersion and oscillation. Occasionally, methods are developed
for reducing the negative impacts of both terms in Eq. (4.208) by combined
temporal and spatial treatments.

Temporal Treatment

Leismann and Frind (1989) attempted to achieve matrix symmetry by plac-
ing the convective term in the previous time level in time marching. The
resulting numerical errors are minimized by introducing an artificial disper-
sion term and by optimal time weighting of all terms on the basis of a Taylor
expansion of the governing equation.

Sudicky (1989) indicated that improper selection of a time step size could
lead to artificial smearing (i.e., numerical dispersion) or oscillations in the so-
lution. He used Laplace transformation to eliminate the temporal derivative
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term from the dispersion-convection equation and solved the ordinary differ-
ential equation in the Laplace domain using the conventional Galerkin finite
element technique.

Spatial Treatment

In general, the spatial treatment is divided into two groups: moving coor-
dinate methods and function transformation methods.

Mowving Coordinate Methods: This method converts a dispersion-convection
equation into a hyperbolic-type equation in order to achieve numerical stability
(Zhang et al. 1993). Assuming that the medium is fully saturated and that
retardation is negligible, the governing equation proposed by Zhang et al.
(1993) collapses to the same format as in Eq. (4.208). The classical dispersion-
convection transport equation is evaluated in the fixed Eulerian coordinate
system.

Using the concept of the total derivative (or Lagrangian derivative), one

has
dc  Oc , oc

at; oty | Bz
Substituting Eq. (4.210) into Eq. (4.208), a parabolic-like equation is formed:

(4.210)

e _ do
BSL‘d - dtz

(4.211)

The concentration ¢ in Eq. (4.211) no longer represents the concentration
at a point in space and in time, but rather the concentration of a fluid particle
moving along the characteristic path described by the following equation:

_
Codt

*

5 (4.212)
This approach is similar in concept and procedure to the “random walk
method” in Section 4.2.4 describing stochastic processes, however, with a dif-
ferent explanation. In Eq. (4.211), a Lagrangian moving coordinate system,
defined in Eq. (4.210), is used to replace the traditional fixed Eulerian coor-
dinate system. As noted by Zhang et al. (1993), the Lagrangian formulation
eliminates the convective term so the governing equation takes on a parabolic
format that can be solved more efficiently with a finite element method. The
final results are converted back to the Eulerian coordinate system through Eq.
4.210).
( In )other numerical schemes related to the moving coordinate method,
“adaptive grid method” (Hu and Schiesser 1981), “adaptive characteristics
method” (Ouyang and Elsworth 1989) and “moving grid method” (Gottardi
and Venutelli 1994) are all similar methods to refine the mesh at the steep
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concentration front so as to minimize dispersion and oscillation, in compari-
son with traditional schemes.

Function Transformation Method: Functional transformation is an effective
way to convert a parabolic-hyperbolic type equation into a more stable parabolic-
type equation. However, the trade-off of this transformation is the result of
solving a more challenging time-dependent boundary problem.

o Method of Ogata and Banks

Ogata and Banks (1961) derived an analytical solution of the classic dis-
persion and convection model of one-dimensional transport using func-
tion transformation. This technique has been adopted in solving convection-
dominated transport equations.

Assuming that the concentration is a function of an exponential function,
as (Ogata and Banks 1961)

%t
¢ = Ao(z, t) exp (2% - Z—D> (4.213)

where A,(z, ) is a transformation function, then substituting Eq. (4.213)
into Eq. (4.32), gives a parabolic-type equation as

A, OA,
D——k = 4.21
0x? ot (4.214)
with the following initial and boundary conditions:
Ab=0 t=0
vt

Ao = coexp (ID) z=0 (4.215)
Ao=0 z2=c0.

It may be noted that the concentration at the inlet boundary becomes
time-dependent. Applying Duhamel’s theorem (Carslaw and Jaeger 1959)
and Laplace transforms to Eqgs. (4.214) and (4.215), the following well-
known analytical solution is obtained after a variety of clever but tedious
analytical maneuvers:

_Co T —vt VT T+ vt
c= 3 [erfc <_—2\/5¥> + exp( D Jerfc (_—_2@)} (4.216)

where “erfc” is the complementary error function, which is related to the
error function “erf” through erfc(z) = 1 — erf(z).
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e Method of Guymon

In solving the convection-dominated transport equation, the presence of
numerical oscillations was first recognized by Price et al. (1968). To cir-
cumvent this difficulty, Guymon (1970) applied the following functional
transformation:
VT
= Azt (--) .

c = Ay(z,t) exp 5D (4.217)
where Ag4(z,t) is also a transformation function.
Substituting Eq. (4.217) into (4.32), yields

O*N, VA, OA,
Dot - ==L (4.218)

In Eq. (4.218), the first-order derivative term with respect to z, which
is problematic in representing convection-dominated transport, is elimi-
nated.

The initial and boundary conditions are transformed to
Ag=0 t=0
Ao=co z2=0 (4.219)
Ag = crexp (%) z=L*

where ¢; is the concentration value at the outlet.

For zero concentration at the outlet, the outlet boundary condition is
simplified to A, = 0. As a result, the boundary conditions become time-
independent. Under such conditions, Guymon’s method is simpler than
Ogata and Banks’ method. However, Guymon’s method is not effec-
tive in reducing numerical instability at higher Peclet numbers (Guymon
1970).

e Method of Bai et al.

The problems associated with the convection-dominated transport equa-
tion are, in general, attributed to the dominance of convection over
dispersion. In general, this problem exists for both steady state and
transient behavior. Bai et al. (1994d) proposed the following procedure.

For steady state transport, Eq. (4.208) reduces to

dc dc
— — 7' =—=0 4.220
Assuming
OA,
Y= 4.221
Y = o (4.221)
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where Ay(z) is an arbitrary function. Eq. (4.221) enables A, to be defined

from
Ay = A) exp(y*z4) (4.222)

where AJ is the function A, at its initial value. Similarly, an analog to
Eq. (4.220) may be defined as

0 O 1 OAy O,  82A;
(Mt | =
Abal‘d 65(},1 Ab 81‘,1 8xd a.’L'g

(4.223)

where Aj is another arbitrary function.

From the development of Egs. (4.221), (4.222), and (4.223), it is amenable
to re-write Eq. (4.220) as

0 dc
= ) — b =0, 4.
oe, {exp( Y q) 8md} 0 (4.224)

Eq. (4.224) yields the exact form of Eq. (4.220). Since the boundary and
initial conditions are unchanged from Eq. (4.209), analytical solution of
(4.224) may be easily obtained for the prescribed outlet concentration
boundary condition as

o 1 exp(v*zq)
1 —exp(—y*) 1—exp(y*)

(4.225)

For modeling steady state solute transport, the method developed by Bai
et al. (1994d) provided more accurate solution in comparison with the an-
alytical solution (van Genuchten 1982) than the Galerkin finite element
method (Fletcher 1984) and the upwind weighting method (Huyakorn
and Pinder 1983), even at high Peclet numbers.
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Chapter 5
ANALYTICAL SOLUTION

5.1 INTRODUCTION

A mathematical model is a replica of some real-world object or system. It is
an attempt to take our understanding of the conceptual process and translate
it into mathematical terms. There are many basic ways to solve mathematical
equations. Analytical methods represent classical approaches to solve the par-
ticular system equations, sometimes in closed form, and sometimes requiring
that the final simplified equations are solved numerically. Even though typi-
cally constrained to reduced spatial dimensions, simple boundary geometries
and initial conditions, analytical methods serve as effective means for prelimi-
nary simulation, sensitivity analysis, and benchmark study for numerical vali-
dations, due primarily to their convenience and ease of application. In reality,
however, closed form analytical solutions are difficult to obtain, and therefore
are rare in their application to coupled problems. However, semi-analytical
solutions in which numerical inversion is used are useful and popular in the
solution of partial differential equations.

Many solutions have already been presented using analytical means, such
as function transformations. However, these solutions were provided only as
illustrations of some basic or well-known approaches and corresponding re-
sults. In contrast, this chapter introduces some popular analytical solution
techniques relevant to solving coupled processes. Specifically, three different
function transformation techniques, together with a method of differential op-
erators, are presented.

5.2 LAPLACE TRANSFORM

As previously demonstrated, Laplace transform is a powerful and broadly used
method for the solution of partial differential equations associated with tran-

163

This is a preview. Click here to purchase the full publication.



https://www.civilenghub.com/ASCE/184921214/Coupled-Processes-in-Subsurface-Deformation-Flow-and-Transport?src=spdf

sient fluid flow and transport phenomena. The technique removes the time
derivative through transformation, rendering partial differential equations as
ordinary differential equations. The predominant application of Laplace trans-
forms is in the solution of decoupled or partially decoupled systems.

5.2.1 Flow

For simulation using the dual-porosity concept, Warren and Root’s (1963)
model may be solved by Laplace transforms only because the fluid pressures
in the matrix and the fractures are decoupled in Laplace space. The following
evaluations are limited to fiuid flow in nondeformable fractured porous media.

5.2.1.1 Solution Method

As an alternative, Barenblatt et al. (1960, 1990) proposed a more complete
dual-porosity formulation than those expressed in Chapter 3 by Egs. (3.83)
and (3.84) through considering the cross-phase storage interaction

k . Opo

1V2101 = cim—5; (9t — CroMi— ot +I'(pr — p2) (5.1)
k Op» , Op

2V2p2 27’72—672 - C21TI28—tl - P(pl - p2) (52)

where ¢}, and c3, are the cross-coefficients. The second terms on the right-hand
side of Eqs. (5.1) and (5.2) were claimed to have an insignificant impact on fluid
mass exchange, and therefore were omitted in the final formulation (Barenblatt
et al. 1990), as shown in Egs. (3.83) and (3.84) (Chapter 3). However, it
is understood that the formulation of Egs. (5.1) and (5.2) is based on the
phenomenology of the system. A more rigorously derived counterpart to this
equation, represented by Egs. (3.124) and (3.125), can be rewritten in a similar
form to Egs. (5.1) and (5.2) as

k12 _ apl 3;02
P —Vp1 =7 ot 25 + I(pr — p2) (5.3)
ky g Op2  Op

et L — 4
#V P2 = g3 — 94, T(p1 — p2) (5.4)

where g1, g2, g3, and g4 correspond to ¢}, ¢},, ¢5; and c3,, respectively, defined
in Eq. (3.137) (Chapter 3).

For convenience of comparison, the Warren and Root model in Chapter 3
is rewritten using terms represented in the following two equations, assuming
the matrix-fracture flow maintains a quasi-steady state, as

Jp
0= gl[‘)_tl +I'(p1 — p2) (5.5)
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ot

where the variables and constants have been defined previously.
In contrast, for the model represented by Egs. (5.3) and (5.4) using the
concept of quasi-steady matrix flow Eq. (5.3) should reduce to

Ops
p V2P2 = 93— —I(p1 — p2) (5.6)

op Op2

0= — + ['(p1 — p2). 5.7
N ~ 9y, +I'(p1 — p2) (5.7)
Assuming the following dimensionless quantities for the quasi-steady ma-
trix flow: )
qu 9
tD wj = 4 ( =1 to 4)

ﬂzg] > 9

J=1
where h, is the reservoir tthkneSS, po is the initial reservoir pressure, q is the
flow rate at the well, and r,, is the wellbore radius. For a block-type matrix,

= [60k;]/[u(s*)?] where s* is the average fracture spacing.
More specifically,

4
Z:l g9 = 7 +fn2
J:

K
o = g l(en = m — na) gt 4+ m)

(

_ ay—ng —my K
JWQ—— m+ny Ky, (5.9)
K
ws = g ((0s = m = ma) g+ ma)

_03— Ny — 7Ny [
wq = n1 + Ng

where Ky, K, and K are the bulk moduli of fractures, solid grain, and fluid,

respectively. Substituting the dimensionless terms given in Eq. (5.8) into the

governing equations (5.7) and (5.4), the new formulation for the radial flow is
Mo(Pps — Ppy) = — .10

(Pp2 p1) = Wi 3tp wa 5tp (5.10)

otp " dtp

1 0 O0Ppy
__—(TD

rp Orp

)+ Aw(Pp1 — Ppa) = w3

e (5.11)
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