GEOTECHNICAL SPECIAL PUBLICATION NO. 239

PAVEMENT MATERIALS, STRUCTURES, AND PERFORMANCE

SELECTED PAPERS FROM THE PROCEEDINGS OF THE 2014 GEOSHANGHAI INTERNATIONAL CONGRESS

May 26-28, 2014 Shanghai, China

SPONSORED BY The Geo-Institute of the American Society of Civil Engineers

EDITED BY Baoshan Huang Sheng Zhao

Published by the American Society of Civil Engineers

Published by American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia, 20191-4382 www.asce.org/bookstore | ascelibrary.org

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document. ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefor. The information contained in these materials should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing such information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers-Registered in U.S. Patent and Trademark Office.

Photocopies and permissions. Permission to photocopy or reproduce material from ASCE publications can be requested by sending an e-mail to permissions@asce.org or by locating a title in ASCE's Civil Engineering Database (http://cedb.asce.org) or ASCE Library (http://ascelibrary.org) and using the "Permissions" link.

Errata: Errata, if any, can be found at http://dx.doi.org/10.1061/9780784413418

Copyright © 2014 by the American Society of Civil Engineers. All Rights Reserved. ISBN 978-0-7844-1337-1 (CD) ISBN 978-0-7844-1341-8 (E-book PDF) Manufactured in the United States of America.

Preface

A variety of topics in pavement structure and materials were covered in this special publication that contains 42 technical papers. The selected papers were organized into three technical sections: (1) Paving Materials Characterization and Modeling; (2) Pavement Evaluation, Analysis and Construction; and (3) Pavement Base and Subgrade. The materials presented in Paving Materials Characterization and Modeling section include aggregates, asphalt binder, hot mix asphalt (HMA), warm mix asphalt (WMA), recycled asphalt pavement (RAP), recycled asphalt shingles (RAS), and asphalt binder additives and fillers. Some new technologies include microwave heating, 3D surface roughness measurements and nano-technology. The Pavement Evaluation, Analysis and Construction section covers pavement field evaluation, structural analysis, as well as the construction technologies for asphalt pavement and concrete pavement. Several models are introduced to analyze and predict major pavement distresses. Pavement preservation technologies are also covered in this section. In the Pavement Base and Subgrade section, the papers concentrate on characterization and performance prediction of subgrade soils and other treated base materials used for pavement construction.

Each paper was reviewed by two or more reviewers as well as the editors prior to being published in this ASCE Geotechnical Special Publication (GSP). The authors were required to address the reviewers' comments until the paper met the satisfaction of the editors. All published papers are eligible for discussion in the Journal of Geotechnical and Geoenvironmental Engineering, Journal of Materials in Civil Engineering, and are also eligible for ASCE awards.

The papers collected in this publication were presented during GeoShanghai 2014 International Conference held in Shanghai, China, May 26-28, 2014. The conference was chaired by Professor Wengi Ding and co-chaired by Professor Lianyang Zhang. The organizations that hosted this conference include Tongji University, the Chinese Institution of Soil Mechanics and Geotechnical Engineering, the Chinese Society for Rock Mechanics and Engineering and the Shanghai Society of Civil Engineering in cooperation with ASCE Geo-Institute, the International Society for Soil Mechanics and Geotechnical Engineering, the International Association of Chinese Infrastructure Professionals, the Deep Foundations Institute in the USA, the Alaska University Transportation Center (USA), University of Edinburgh (UK), Ruhr University Bochum (Germany), University of Cambridge (UK), Ecole des Ponts Paristech (France), Virginia Polytechnic Institute and State University (USA), the Shanghai Society of Theoretical and Applied Mechanics, Nagoya Institute of Technology (Japan), University of Arizona (USA), the Transportation Research Board (TRB) (USA), University of Kansas (USA), Georgia Institute of Technology (USA), Vienna University of Natural Resources and Applied Life Sciences (Austria), and University of Tennessee (USA).

Editors:

Baoshan Huang, Ph.D., P.E., and Sheng Zhao

The University of Tennessee, Knoxville, TN

January 22, 2014

Acknowledgements

The editors would like to appreciate the organizing committee providing technological support in administrating the paper submission. Thanks are extended to Donna Dickert of ASCE, Robert Schweinfurth of ASCE Geo-Institute (G-I) and ASCE Construction Institute (CI). Special thanks are given to the following individuals that provided timely and high-quality technical reviews for one or more papers submitted to this conference:

Name	Orgazation	Country
Benjamin F. Bowers	University of Tennessee	USA
Zhigang Cao	Zhejiang University	China
Xingwei Chen	Louisiana Department of Transportation and Development	USA
Lin Cong	Tongji University	China
Shongtao Dai	Minnesota Department of Transportation	USA
Qiao Dong	Tennessee Department of Transportation	USA
Hongren Gong	University of Tennessee	USA
Wei Hu	University of Tennessee	USA
Baoshan Huang	University of Tennessee	USA
Jagada Jha	Guru Nanak Dev Engineering College	India
Xiaoyang Jia	University of Tennessee	USA
Ximiao Jiang	Federal Highway Administration	USA
Marta Kadela	Dr Eng. Building Research Institute	Poland
Zhen Leng	Hong Kong Polytechnic University	China
Peng Li	Chang'an University	China
Xinjun Li	Federal Highway Administration	USA
Juanyu Liu	University of Alaska	USA
Louay N.	Louisiana Transportation Research Center	USA
Mohammad	_	
Andre A.A.	Delft University of Technology	The
Molenaar		Netherlands

Mbakisya A.	University of Tennessee at Chattanooga	USA
Onyango		
Jinsong Qian	Tongji University	China
Tyler Rutherford	University of Tennessee	USA
Cedric Sauzeat	University of Lyon/ENTPE, LGCB & LTDS	France
A U Ravi Shankar	NITK Surathkal, Srinivasnagar Post Karnataka	India
Xiang Shu	University of Tennessee	USA
Weimin Song	University of Tennessee	USA
Hao Wang	The State University of New Jersey	USA
Zhenjun Wang	Chang'an University	China
Hao Wu	Central South University	China
Feipeng Xiao	Wuhan University of Technology	China
Henglong Zhang	Hunan University	China
Hongduo Zhao	Tongji University	China
Sheng Zhao	University of Tennessee	USA
Changjun Zhou	University of Tennessee	USA
Fujie Zhou	Texas A&M Transportation Institute	USA
Yumin Zhou	Tongji University	China

GSP 239 Table of Contents

Paving Materials Characterization and Modeling

Laboratory Preparation and Microwave Heating Test of CIPs/Asphalt Binder	1
Zhenjun Wang, Sheng Wang, Tao Ai, and Peng Zhao	
Stone Matrix Asphalt Using Aggregates Modified with Waste Plastics	9
Goutham Sarang, B. M. Lekha, and A. U. Ravi Shankar	
Simulation of Aggregate Heating in Asphalt Plants	19
Haifang Wen and Kun Zhang	
Effect of Cement on Palm Kernel Shell Ash Stabilized Reclaimed Asphalt	29
Pavement As Highway Pavement Material	
Joseph Ejelikwu Edeh, Thomas Okwor Ashanda, and Kolawole Junwolu Osinubi	
Comparison of Surface Energy Values of Limestone with Respect to	39
Different 3D Surface Roughness Measurements	
Anjana Thoroppady Kittu, Rifat Bulut, and Sandip Harimkar	
Changes in Contact Angles on Miller Creek Granite with Different Grades of	48
Polishing Grits	
Suryadithya Rayudu and Rifat Bulut	
Linear Viscoelastic Domain for Bituminous Mixtures	59
Quang Tuan Nguyen, Herve Di Benedetto, and Cedric Sauzeat	
Infrastructure Sustainability: The Use of Recycled Asphalt Shingles in	69
Flexible Pavements	
Samuel B. Cooper, Jr., Louay N. Mohammad, and Mostafa A. Elseifi	
Rheological Characteristics of Nano-Sized Hydrated Lime-Modified Foamed	79
Warm Mix Asphalt	
Aboelkasim Diab and Zhanping You	

Evaluation of a Sample Orientation in Flexural Stiffness and Temperature	90
Induced Damage in the Fatigue Life of Asphalt Concrete	
Md. Rashadul Islam, Md. Tahmidur Rahman, and Rafiqul A. Tarefder	
X-Ray Tomography Based Microstructural Model for Multi-Physical Analyses	100
of Concrete	
Tongyan Pan and Stephen F. Lloyd	
Experimental Study on the Water-Sensitivities of Compacted Red Clay in	109
Guangxi, China	
Qingke Nie and Bing Bai	
Effect of Hindered Amine Light Stabilizer on Rheological and Aging	120
Properties of SBS Modified Asphalt	
Zhengang Feng and Xinjun Li	
Characterization of Elemental Transport from Fly Ash: A Column Study	131
Zhenwei Zhu and Qiang He	
Laboratory Evaluation of Asphalt Cement and Mixture Modified by Bio-Char	140
Produced through Fast Pyrolysis	
Sheng Zhao, Baoshan Huang, and Philip Ye	
A Residual Thermal Stress Calculation of Asphalt Based on a Coupled	150
Viscoelastic Phase-Field and Navier-Stokes System	
You have highing Wang, and Wanitan Con	

Yue Hou, Linbing Wang, and Wenjuan Sun

Pavement Evaluation, Analysis, and Construction

Mechanistic-Empirical Model to Characterize Rutting in an Unpaved Road	157
with a Shallowly Buried SRHDPE Pipe	
Zhigang Cao, Jie Han, Deep K. Khatri, and Yuanqiang Cai	
Premature Pavement Distresses of Cracks and Rutting Analysis and	167
Mechanical Analysis in Ultra-Thin Asphalt Pavement	
Tingting Su, Runhua Guo, Xiaobing Qiao, and Jian Liu	
Shakedown of Layered Pavements under Repeated Moving Loads	179
Shu Liu, Juan Wang, Hai-Sui Yu, and Dariusz Wanatowski	

Rutting Resistance Ability Related to Asphalt-Aggregate Bonding Based on	189
Surface Energy Analysis	
Lin Cong, Qian Wang, and Lintao Cao	
Structural Responses of Port Interlocking Concrete Block Pavements Based	200
on a Three-Dimensional Mechanistic Model	
Yumin Zhou, Zhiming Tan, and Honglong Hu	
Effects of Hurricanes Katrina and Rita Flooding on Louisiana Pavement	212
Performance	
Xingwei Chen and Zhongjie Zhang	
Pavement Evaluation Using Ground Penetrating Radar	222
Shongtao Dai and Qiwu Yan	
Evaluation of Pavement Preservation Treatments Used in Alaska	231
Anthony P. Mullin, Juanyu Liu, and Hannele Zubeck	
Verification of Mechanistic Prediction Models for Asphalt Mixes	241
Mbakisya A. Onyango and Stefan A. Romanoschi	
Simplified Thermal Stress Model to Predict Low Temperature Cracks in	251
Flexible Pavement	
Md. Rashadul Islam, Umme A. Mannan, Asma Rahman, and Rafiqul A. Tarefder	
Potential Application of Using Multi-Head Pavement Breaker for Concrete	262
Pavement Rubblization over Weak Subgrade	
Moinul Mahdi and Zhong Wu	
Evaluation of Two Pavement Rehabilitation Techniques for Municipal Roads	273
Ignatius Fomunung, Joseph Owino, Mbakisya Onyango, and Ammar El Hassan	
Pavement Condition Monitoring System at Shanghai Pudong International	283
Airport	
Hongduo Zhao, Can Wu, Xiaohong Wang, and Yuefeng Zheng	
Predicting Field Performance of Skid Resistance of Asphalt Concrete	296
Pavement	
Hui Wang and Robert Y. Liang	
Prediction of Bulk and Interface Failure Potential in Asphalt Pavements	306
under Multi-Axial Stress States	

Hao Wang

Application of Energy Based Approach to Moisture Sensitivity of WMA	316
Mixtures	
Feipeng Xiao, Serji N. Amirkhanian, Zhe Luo, and Yongyue Wen	
Faulting Prediction Model for the Design of Concrete Pavement Structures	327
Keivan Neshvadian Bakhsh and Dan Zollinger	
Establishment of Performance Models and Effectiveness Evaluation of	343
Pavement Maintenance Treatments at Different Traffic Levels	
Qiao Dong and Baoshan Huang	
Use of Automated Survey for Surface Cracking Distress Condition in a	351
Pavement Management System	
Xin Qiu and Feng Wang	

Pavement Base and Subgrade

Freeze-Thaw Cycling Effect on the Constrained Modulus and UCS of	364
Cementitiously Stabilized Materials	
Zhipeng Su, James M. Tinjum, Ahmet Gokce, and Tuncer B. Edil	
Cassava Peel Ash Stabilized Lateritc Soil As Highway Pavement Material	375
Joseph Ejelikwu Edeh, Simon Terdoo Tyav, and Kolawole Junwolu Osinubi	
Predictive Model for Nonlinear Resilient Modulus of Emulsified Asphalt	383
Treated Base	
Peng Li and Juanyu Liu	
Application of Fine Sand in Coastal Areas As Subgrade Filling	395
Jinsong Qian, Peng Wang, and Peng Tan	
Dynamic Stress Study in Pavement Subgrade under a Major Highway in	403
Hong Kong	
Gordon L. M. Leung, Zhen Leng, and Alan W. G. Wong	
Prediction of the Variation of the Resilient Modulus with Respect to the Soil	414
Suction for Three Granular Materials Using Three Methods	
Zhong Han and Sai K. Vanapalli	
Response of Subsoil to Cyclic Load Transferred by Pavement	424
Marta Kadela	

Laboratory Preparation and Microwave Heating Test of CIPs/Asphalt Binder

Zhenjun Wang¹, Sheng Wang², Tao Ai³ and Peng Zhao⁴

¹Associate professor, School of Materials Science and Engineering, Chang'an University, Xi'an 710061, P.R. China; wangzhenjun029@163.com

²Postgraduate, School of Materials Science and Engineering, Chang'an University, Xi'an 710061, P.R. China; wzjolan@163.com

³Associate professor, School of Materials Science and Engineering, Chang'an University, Xi'an 710061, P.R. China; aitao@chd.edu.cn

⁴Professor, School of Materials Science and Engineering, Chang'an University, Xi'an 710061, P.R. China; zyzhaop@chd.edu.cn

ABSTRACT: Microwave heating technology has been adopted in asphalt pavement maintenance to reduce the total cost resulting from the energy consumption. In this paper, laboratory preparation and microwave heating test of carbonyl iron powders (CIPs)/asphalt binder were carried out. The modeling procedure, microwave heating efficiency and the properties of the CIPs/asphalt binder, such as penetration, softening point and ductility, were studied. The results show that microwave heating efficiency of CIPs/asphalt binder is enormously higher than that of ordinary asphalt binder. Adding a certain amount of CIPs can improve the asphalt binder's resistance to deformation at high temperature. All these can put forward a theoretical basis to design asphalt mixtures being suitable to be used in snow and ice removal by microwave pavement maintenance vehicles.

INTRODUCTION

As to the problem that conventional heating methods requires that the energy propagates through the asphalt materials by diffusion, power microwave was adopted to heat asphalt binder with CIPs by its microwave absorbing characteristics at different frequencies (Zivkovic et al. 2012). Microwave heating is a relatively new technology, which provides alternative approaches for enhancing material properties (Chun et al. 2013). There had been many studies on the construction and evaluation of asphalt mixes pavement with microwave technology. For example, Jaselskis et al. (2001) measured the density of asphalt in real time using a differential microwave signal approach. Sun et al. (2008) built a two-dimensional heat transfer model for the asphalt mixtures within the heating range based on the theory of unsteady heat conduction to solve for temperature fields in microwave heating for recycling asphalt mixtures. Meanwhile, a volume