
Table 2.  Thermo-physical Properties of Panel Layers  

Item 
Conventional Sandwich 

Panel 
UHP-FRC Panel 

Insulation Conductivity (W/m-K) 0.005769 0.005769 

Insulation Specific Heat (J/kg-K) 645 645 

Insulation Density (kg/m
3
) 28 20 

Concrete Conductivity (W/m-K) 2.31 1.77 

Concrete Specific Heat (J/kg-K) 832 1010 

Concrete Density (kg/m
3
) 2322 2403 

 

Uncertainty Quantification.  Probabilistic models were created to represent uncertainties of two 

critical input parameters of the simulation model due to their highly acknowledged importance in 

the literature of probabilistic building energy performance assessment: occupancy level and 

Infiltration rate (Li et al., 2015; de Wilde et al., 2011; Pettersen, 1994). Since the objective of this 

paper is the energy performance evaluation of two competing façade systems, the uncertainties in 

physical properties of different layers of these facade systems were also taken into account. 

These uncertainties were also acknowledged in the literature (Eisenhower et al., 2011; Petr et al., 

2007). Table 3 shows the uncertain parameters and their probability distributions� types and 

parameters. 
 

Table 3.  Uncertain parameters and their probability distributions 

Uncertain Parameters Distribution 

Distribution Parameters 

Conventional  

Sandwich Panel 
 UHP-FRC Panel 

Insulation Conductivity Normal 
µ=0.005769, ࣌=0.0023076 

µ=0.005769,  ࣌=0.0023076 

Insulation Specific Heat Normal µ=645 , ࣌=38.7 µ=645 , ࣌=38.7 

Insulation Density Normal µ=28 , ࣌=5.3 µ=20 , ࣌=3.78 

Infiltration rate Normal 
µ=0.21 , ࣌=0.01373 

µ=0.21 , ࣌=0.01373 

Concrete Conductivity Normal µ=2.31, ࣌=0.13 µ=1.77, ࣌=0.1 

Concrete Specific Heat Normal µ=832 , ࣌=49.9 µ=1010 , ࣌=60.6 

Concrete Density Normal µ=2322 , ࣌=441 µ=2403 , ࣌=456 

Infiltration rate Normal 
µ=0.21 , ࣌=0.01373 

µ=0.21 , ࣌=0.01373 

Occupancy Triangle a=1, c=2.5, b=5.2 a=1, c=2.5, b=5.2 

 

Monte Carlo Simulation.  We randomly sampled from the probabilistic models of the 

uncertainties and propagated the sampled values through the energy simulation model using 

Monte Carlo simulation for 100 iterations to create a pool of randomly generated buildings with 

different energy consumptions for the prototype building with UHP-FRC panel and the prototype 

building with conventional panel for each scenario. This number of iterations is more than 80 

that is proposed in the literature to achieve valid results independent of the number of varied 

parameters (Macdonald, 2002). Latin hypercube sampling (LHS) (Li et. al., 2015; Hopfe et al., 
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2007a; Macdonald, 2002; Mckay et. al., 1979) was used to effectively explore the input space of 

the energy models with reasonable computational cost. 

 

Probabilistic Energy Reduction Calculation.  The simulated energy consumption of the 

prototype building with UHP-FRC panel was compared with the simulated energy consumption 

of the similar prototype building with conventional panel for each scenario to calculate the 

energy reductions attributed to the use of UHP-FRC panels. 100 iterations of the Monte Carlo 

simulation for each scenario will result in 100 energy reductions for each scenario.  

 

Hypothesis Testing.  The simulated energy reductions for each scenario were used to test the 

hypothesis that the average of the annual energy consumptions of the randomly generated 

prototype buildings with the proposed panels is less than the average of the annual energy 

consumptions of the prototype buildings with conventional panels. T-test (parametric) and sign 

test (non-parametric) were used to test this hypothesis. The null hypothesis of these tests is that 

the average of the annual energy consumptions of the randomly generated DOE prototype 

buildings with the proposed panels is equal or greater than the average of annual energy 

consumptions of the buildings with the conventional panels. Successful rejection of the null 

hypothesis provides us with adequate evidence to claim that using UHP-FRC panels result in 

energy savings. 

 

RESULTS 

Figure 1 presents the annual energy consumptions (heating and cooling) of building prototypes 

with UHP-FRC panels and building prototypes with conventional sandwich panels for each 

scenario using boxplots. As this figure clearly shows the average (shown by x symbol) of the 

annual energy consumptions of the randomly generated DOE prototype buildings with the UHP-

FRC panels is less than the average of the annual energy consumptions of the buildings with the 

conventional panels for all scenarios. The results of T-tests (Table 4) and sign tests (Table 5) 

show that we can accept the alternative hypothesis that the average of the annual energy 

consumptions of the randomly generated DOE prototype buildings with the UHP-FRC panels is 

less than the average of annual energy consumptions of the buildings with the conventional 

panels for eight scenarios: high-rise buildings in Chicago and Fairbanks, midrise buildings in 

Chicago, El Paso, and Fairbanks, and hospitals in Chicago, El Paso, and Fairbanks. In other 

words, the energy consumption is decreased if UHP-FRC panels are used in these scenarios. 

Although, the average of the annual energy consumptions (heating and cooling) of high-rise 

buildings with UHP-FRC panels was less than the annual energy consumptions of the high-rise 

buildings with the conventional panels in El Paso, there is not enough evidence to reject the null 

hypothesis. 
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CONCLUSION 

 

Three DOE prototype buildings (high-rise building, mid-rise building, and hospital), EnergyPlus 

building energy simulation, and Monte Carlo simulation were used to assess the probabilistic 

energy performance of the UHP-FRC façade system in comparison with conventional sandwich 

panel façade system in three cities in different climate zones (Chicago, Fairbanks, and El Paso). 

The results of probabilistic building energy simulation analysis show that the average of the 

annual energy consumptions of the randomly generated DOE prototype buildings with the UHP-

FRC panels is less than the average of the annual energy consumptions of the buildings with the 

conventional panels for all scenarios. The results of the T-test (parametric) and sign test (non-

parametric) show that we can accept the alternative hypothesis that the average of the annual 

energy consumptions of the randomly generated DOE prototype buildings with the UHP-FRC 

panels is less than the average of annual energy consumptions of the buildings with the 

conventional panels for all but one scenario (High-rise building in El Paso).  It is expected that 

this result help building energy professionals select proper building façade systems considering 

uncertainties in decision-making. 
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Abstract 

 
Widespread damage of water supply systems during recent earthquakes clearly shows the need 
for seismic planning. However, water supply seismic planning is subject to uncertainties in 
location, magnitude, and resulting damage of earthquakes. This problem is further complicated 
by complex topology of water supply systems along with the use of different materials, joint 
characteristics, pipe diameters and soil corrosivities. The objective of this paper is to identify 
critical links of water supply networks subject to various earthquakes and find optimum renewal 
decision given resource constraints. The methodology comprises of four interconnected 
components: (1) Repair Rate Probabilistic Modeling; (2) Monte Carlo Simulation; (3) Hydraulic 
Damage Modelling; and (4) Resource Allocation Optimization. The first component calculates 
repair rate for each pipe in the network based on empirical fragility curves. Empirical fragility 
curves depend on the pipes� location, material, diameter, joint property and soil corrosivity. 
Monte Carlo simulation generates probabilistic damages (i.e., leaks and breaks) in the pipe 
network. The hydraulic model calculates serviceability index considering simulated damages. 
Resource allocation optimization model uses genetic algorithm to find the optimum renewal 
decision to maximize serviceability index given resource constraints. The proposed model was 
validated using a water supply network. The network consists of 117 pipes and 92 junctions. The 
results show that the proposed methodology outperforms the latest proposed methodology in the 
literature to identify critical links in a water network. The network serviceability index is used as 
the measure to compare the results with the latest proposed methodology in the literature. 
 
INTRODUCTION 

 
Past earthquakes, such as the 1906 San Francisco earthquake, the 1994 Northridge earthquake, 
and the 1995 Hyogoken-Nanbu (Kobe) earthquake have demonstrated that water delivery 
systems are vulnerable to earthquakes (Hwang et al. 1998). 1994 Northridge earthquake resulted 
in more than 1,400 repairs due to leaks and breaks on pipelines; about 100 repairs in critical large 
diameter pipes (O'Rourke 1996). These repairs put significant financial burden on utilities. To 
put this burden into context, it is sufficient to know that the average cost of a large diameter 
water main failure is about $12 million (Yerri et al. 2016). Although it is widely acknowledged 
that water infrastructure is in appalling condition and there exists desperate need of renewal, 
there is enormous gap between funds needed to renew or rehabilitate the deteriorating drinking 
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water infrastructure and available funds. USEPA estimated $485 billion to $895 billion funding 
gap projected over next 20 years� period (Cagle 2003). In such situation, limited resources 
should be invested in highly efficient way; optimal renewal decisions should be identified. 
Therefore, it is essential to identify critical links in the network for inspection and renewal 
decision making. Identification of the critical links in an existing network requires a seismic 
vulnerability assessment model of the network that considers seismic performance of pipes and 
hydraulic principles along with an optimization algorithm that can identify optimal renewal 
decision to maximize serviceability of the network. 
 
Early seismic vulnerability assessment methods for water pipe networks focused on individual 
pipes. Development of empirical seismic vulnerability relations (Eguchi et al., 1983; Honegger 
and Eguchi, 1992; O�Rourke and Ayala, 1993; O�Rourke and Jeon 1999; ALA 2001; O�Rourke 
and Deyoe 2004) has been the most common seismic vulnerability assessment approach. These 
empirical relations are based on performance of various classes of buried pipes against historical 
earthquakes. They provide likelihood of damage of pipes (i.e. Repair Rate) for a given 
earthquake hazard parameter, such as Peak Ground Velocity (PGV). Although understanding the 
performance of individual pipes is critically important, the network resilience depends on 
dynamic interactions of these individual pipes and principles driving these interactions, such as 
hydraulic principles. Recent advances in computational engineering, probabilistic modeling, and 
network simulation motivated researchers to go beyond component-level assessment and create 
seismic vulnerability assessments for water pipe networks in the last two decades.   
 

A water pipe network is composed of several components to reliably meet water demands. 
Therefore, water network resilience should be described based on the performance of these 
interacting components. Monte Carlo simulation is often used to propagate the empirically 
modeled seismic response of individual network components and their consequent damages into 
hydraulic models for a range of earthquakes. Hydraulic pressure and flow principles are used to 
estimate the networks� reliability and serviceability for each scenario created by Monte Carlo 
simulation. Shi (2006) followed this approach and empirically modeled the seismic response of 
water supply systems considering both hydraulic principles and fragility relations. This approach 
has been further expanded by other researchers to create several system reliability and 
serviceability indices (Wang et al. 2010) and visualize the assessment spatially using Geographic 
Information System (Zolfaghari and Niari 2009). Wang et al. (2010) used efficient frontier 
approach to identify and rank a network�s critical links.  
 
Most of the literature on seismic vulnerability assessment of water pipe networks do not propose 
an approach for resource allocation to enhance seismic resilience of the networks. In rare studies, 
the simple prioritizations of retrofit interventions solely based on the vulnerability assessment 
have been proposed (Wang et al. 2010). This simple prioritization does not distribute resources at 
the system-level and may not provide an economical solution. For example, suppose there is a 
long pipe with the highest priority. The cost of rehabilitation of this pipe is equal to rehabilitation 
of several short pipes with lower priority in the network. Perhaps, the rehabilitation of these short 
pipes collectively could result in much higher enhancement of network resilience. Therefore, 
there is a need to develop an approach to determine the best rehabilitation strategy to maximize 
the network�s expected system serviceability given limited resources. The major contribution of 
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this paper is to develop a resource allocation algorithm and integrate it with the seismic 
vulnerability assessments of water pipe networks. 
 
The objective of this paper is to identify critical links of water supply networks subject to various 
earthquakes and find optimum renewal decision given resource constraints. Resource constraints 
refer to the funding limitation that water utilities have: they can only renew up to a specific 
length of their pipes per year. The methodology is explained in the following section. Then, the 
results and validation are presented which is followed by conclusions. 
 

METHODOLOGY 

 

The methodology comprises of four interconnected components: (1) Repair Rate Probabilistic 
Modeling; (2) Hydraulic Damage Modelling; (3) Monte Carlo Simulation; and (4) Resource 
Allocation Optimization. These components are explained in the rest of this section. 
 

Repair Rate Probabilistic Modeling.  Pipe repair rate (RR) determines the likelihood of a pipe 
to be damaged (by leaks or breaks) after an earthquake. Empirical fragility models could be used 
to determine repair rate for each pipe of a network for a given earthquake. Fragility relations 
proposed by ALA (2001) is used in this study as they take into account major characteristics of 
pipes, such as material, diameter, joint properties, and soil corrosivity to determine the likelihood 
of pipe to be damaged. These fragility relations are based on damage statistics collected from 
large number of earthquakes. 
 
Repair rate of a pipe is dependent on two factors; pipe property and seismic hazard. These 
factors are the inputs to the ALA (2001) fragility relations. Pipe properties include pipe material, 
pipe joint characteristics, pipe diameter, and soil corrosivity around the pipe. Seismic hazard is 
typically modeled by Peak Ground Velocity (PGV) and Peak Ground Acceleration (PGA) of the 
earthquake for which the repair rate is being calculated. Peak Ground Acceleration (PGA) maps 
are available from USGS (2016) for probabilistic earthquakes. These PGA values can be 
converted to PGV values using Wald et al. (1999). Since earthquakes are probabilistic, these 
repair rates become probabilistic. 
 

Hydraulic Damage Modeling and Monte Carlo Simulation.  The hydraulic damage modeling 
proposed by Shi (2006) is used in this study. Location of damage is modeled as Poisson process 
where location of ith damage in a pipe P is given by: 
 ݈௣,௜ = − ଵோோ ∗ ln	(1 − ܷ)                                                                                                          Eq. (1) 

 

Where l୮,୧ is the location of ith discontinuity (leaks or breaks) in pipe P from its start node, RR is 

repair rate calculated for the pipe and U is uniformly distributed random number between 0 and 
1. Damages are characterized as leaks and breaks based on the approach proposed by Shi (2006). 
Monte Carlo simulation was used to create 5000 damaged networks where the locations of 
damaged pipes were calculated using Eq. (1). The damaged networks were analyzed using a 
quasi-pressure driven hydraulic analysis model to determine the pressure at each node. 
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Resource Allocation Optimization.  The objective of the resource allocation optimization is to 
maximize the serviceability of the network assuming that the water agencies can only rehabilitate 

a certain length of pipes (l୰ୣ୦ୟୠ.) due to budget limitations. The repair rate of a pipe becomes 
zero if pipe is rehabilitated. The resource allocation is formulated as maximization of expected 
value of the system serviceability index (SSI) for a water distribution network subjected to 
earthquakes where SSI is defined as the ratio of demand fulfilled after an earthquake to inherent 
(original) demand of a water distribution network. The optimization is formulated as below. 
	ݔܽܯ  ∑ ∑ ௫ೝ೔஽೔೔ಿసభಿಾ಴ೄೝసభேெ஼ௌ∗∑ ஽೔೔ಿసభ                                                                                                                Eq. (2) 

 
Subject to: 
 

 ∑ ܽ௞݈௞ ≤ ݈௥௘௛௔௕.ே೛௞ୀଵ ௥௜ݔ  = 1	݂݅	 ௥ܲ௜ ≥ ௧ܲ௛௥௘௦௛௢௟ௗ	ݔ௥௜ = 0	݂݅	 ௥ܲ௜ ≤ ௧ܲ௛௥௘௦௛௢௟ௗ ܽ௞ = ௞ܽ	.݀݁ݐݐ݂݅݋ݎݐ݁ݎ	ݏ݅	݇	݁݌݅݌	݂݅	1 = ௥௜ݔ .݀݁ݐݐ݂݅݋ݎݐ݁ݎ	ݐ݋݊	ݏ݅	݇	݁݌݅݌		݂݅	0 , ௥ܲ௜ , ௜ܦ , ݈௞ , ܽ௞ ≥ 0 
 

where ܰ is number of nodes in the network, ௣ܰ is number of pipes in the network, ܰܵܥܯ is 

number iterations of Monte Carlo simulation, ܦ௜ is the demand on node ݅, ௥ܲ௜ is pressure at node ݅ during ݎ௧௛ run of Monte Carlo simulation, ௧ܲ௛௥௘௦௛௢௟ௗ is minimum pressure required at node 

imposed by firefighting demand and ݈௞ is length of pipe ݇. The pressures at the network�s nodes 
are calculated using a quasi-pressure driven hydraulic analysis model for each run of Monte 
Carlo simulation. 
 
The probabilistic nature of damage generation along with the combinatorial nature of the 
selection of pipes for rehabilitation makes this formulation stochastic combinatorial 
optimization. Solving this optimization problem is extremely challenging due to non-convex and 
non-continuous objective function and lack of closed form representation for the objective 
function. Since the objective function does not necessarily have a closed-form representation, 
conventional algorithms for solving combinatorial stochastic optimization problems, such as 
deterministic reformulation are not applicable. Therefore, a genetic algorithm with tournament 
selection, two-point cross over, and random mutation were devised to maximize the 
serviceability of the network assuming that the water agencies can only rehabilitate a certain 
length of pipes due to budget limitations. 

RESULTS 

 
We used the methodology detailed in the previous section to identify best rehabilitation policy 
for a fairly complex water distribution network (Figure 1) analyzed by Wang et al (2010). We 
selected this network to be able to compare the proposed algorithm in this study with the most 
recent algorithm proposed by Wang et al. (2010) for seismic risk assessment of water supply 
networks.  

Computing in Civil Engineering 2017 234

© ASCE

https://www.civilenghub.com/ASCE/186223884/Computing-in-Civil-Engineering-2017-Smart-Cities-Sustainability-and-Resilience?src=spdf


 
 
This netw
lake whil
the entire
the pipe 
comparis
welded jo
with britt
 
Based o
retrofittin
genetic a
paramete
 
Table 1. 

GA Param

Maximum
Initial Mu
Cross Ove
Decrease 
Number o

 
 

work consist
le 3 tanks ar
e network is 

was assum
son. Therefo
oints while p
tle joint. Nod

n 5000 Mo
ng was 0.889
algorithm w

ers of the gen

Genetic Alg

meter 

m Generation 
utation Rate 
er Type 
of Mutation R

of bits mutate

ts of 92 junc
re provided t
65,748.96 m

med as per W
ore, pipes wi
pipes with d
dal demand 

onte Carlo 
9 for an eart

was used to
netic algorith

gorithm Par

Rate 
d 2

Figure 1

ctions and 1
to manage th
m. (215,711.
Wang et al. 
ith diameter
diameters les
assignment 

simulations
thquake haz
o determine
hm while Ta

rameters 

Val

5
90

2 P
3% every 

20% of chrom

1. Test Netw

117 pipes. T
he demand o
80 ft). For se
(2010) so t

s above 24 i
ss than 24 in
was also con

s, the expec
zard with PG
 optimal re

able 2 summ

lues 

50 
0% 

Point 
generation 

mosome=24 bi

work 

The network 
of the system
eismic repai
that results 
inches were

nches were a
nsistent with

cted SSI of
GV value of 
ehabilitation

marizes the re

its 

has 2 sourc
m. Total leng
ir rate calcul
could be la

e assumed as
assumed to b
h Wang et al

f the netwo
53.4 cm/s (2

n plan. Tab

esults. 

 

ces; a river a
gth of the pip
lation, mater
ater validate
s steel pipes
be cast iron 
l. (2010). 

ork without
21.38 in/s). 

ble 1 shows

and a 
pes of 
rial of 
ed by 
s with 
pipes 

t any 
Then 
s the 

Computing in Civil Engineering 2017 235

© ASCE

https://www.civilenghub.com/ASCE/186223884/Computing-in-Civil-Engineering-2017-Smart-Cities-Sustainability-and-Resilience?src=spdf

	0001
	0002
	0003
	0004

