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Engineering systems. The processes of engineering analysis and design can be 

systematically performed within a systems framework. Generally, an engineering 

project can be modeled to include a segment of its environment that interacts 

significantly with it to def'me an engineering system. The boundaries of the 

system are drawn based on the goals and characteristics of the project, the class of 

performances (including failures) under consideration, and the objectives of the 

analysis. A generalized systems formulation allows researchers and engineers to 

develop a complete and comprehensive understanding of engineering products, 

processes, and activities. In a system formulation, an image or a model of an 

object which emphasizes certain important and critical properties is defined. 

Systems are usually identified based on the level of knowledge and/or information 

that they contain. Based on their knowledge levels, systems can be classified into 

consecutive hierarchical levels. The higher levels include all the information and 

knowledge introduced in the lower ones in addition to more specific information. 

System definition is usually the first step in an overall methodology formulated 

for achieving a set of objectives. 

The first step in engineering problem-solving is to define the architecture 

of a system. The definition can be based on observations at different system 

levels that are established based on the goals of the project. The observations can 

be about the different elements (or components) of the system, interactions among 

these elements, and the expected behavior of the system. Each level of knowledge 

that is obtained about an engineering problem defines a system to represent the 

project. As additional levels of knowledge are added to previous ones, higher 

epistemological levels of system definition and description are possible which, 

taken together, form a hierarchy of the system descriptions. 

Informally, what is an engineering system? According to Webster's 

dictionary, a system is defined as "a regularly interacting or interdependent group 

of items forming a unified whole." For engineers, the definition can be stated as 

"a regularly interacting or interdependent group of items forming a unified whole 

that has some attributes of interest." Alternately, a system can be defined as a 

group of interacting, interrelated, or interdependent elements that together form a 

complex whole that can be a physical structure, process, or procedure of some 

attributes of interest. All the parts of a system are related to the same overall 

process, procedure, or structure, yet they are most likely all different from one 

another and often perform completely different functions. 

Systems engineering can be defined as a discipline that establishes the 

configuration and size of system hardware, software, facilities, and personnel 

through an interactive process of analysis and design, satisfying an operational 

mission need in the most cost-effective manner. A system engineering process 

identifies mission requirements and translates them into design requirements at 

succeeding lower levels to insure operational and performance satisfaction. 

Control of the evolving development process is maintained through a continuing 

series of reviews and audits of technical documentation produced by systems 

engineering and other engineering organizations. 
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Objectives in the framework of decision-based design. The primary objective of 

this paper is to utilize expert-opinion elicitation to provide a plan for adapting and 

developing quantitative models and measures of various ignorance and 

uncertainty types that are suitable for prediction and decision-based design of 

complex engineering systems. This objective can be achieved by performing the 
following tasks as shown in Figure 1: 

1. Define a hierarchical taxonomy of ignorance. 

2. Associate ignorance taxonomy with phases of modeling and analytically 
simulate engineering systems. 

3. Identify and develop quantitative methods for modeling various uncertainty 

types. Probabilistic and non-probabilistic methods should be considered in this 

task to cover ignorance types discussed in subsequent sections. Verify 
developed methods. 

4. Identify and develop quantitative methods for measuring various uncertainty 

types, such as the Hartley-like measures, Shannon-like entropies, fuzziness 

measures, etc. Probabilistic and non-probabilistic methods such as theory of 

evidence, generalized fuzzy measures, and imprecise probabilities, among 

others, should be considered in this task. Verify developed methods. 

5. Identify and develop quantitative methods for modeling joint uncertainty types 

and combining uncertainty measures. Verify developed methods. 

6. Assess suitability and practicality of using the methods and measures that are 

the products of Tasks 3, 4, and 5 for prediction and decision-based design 

(DBD) of engineering systems. 

7. Develop illustrative examples and a case study. Validate case study using, for 

example, expert-opinion elicitation and uncertainty analysis. 

In subsequent sections, background materials for performing these tasks 

are provided. 

Ignorance and Knowledge 

Modeling and analytically simulating engineering systems, as a process, involves 

several phases that typically consist of (1) conceptual modeling of a real system, 

(2) mathematical modeling of the conceptual models, (3) discretization and 

algorithm selection, (4) computer programming, (5) numerical solution, and (6) 

representation of the numerical solution [Oberkampf et al. 1999]. This process 

can be enhanced by assessing the state of knowledge and ignorance at the various 

phases. Knowledge regarding some domain of interest may be broadly 

understood as the body of justified true beliefs pertaining to the domain. It is 

always defined in the context of human experiences, from which it cannot be 

removed. As a result, knowledge would always reflect the imperfect human 

nature that can be attributed to our reliance on the senses for knowledge 

acquisition, and on the mind for extrapolation, creativity, imagination, bias, and 

application. An important aspect in dealing with knowledge is non-knowledge, or 

ignorance, that needs to be examined, modeled, and measured at the various 

phases. 
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Figure 1. Decision-based desi.gn, verification, 
and validation of engineering systems. 

Time and its asymmetry are crucial in defining knowledge and ignorance 

[Horwich 1987]. Time asymmetry describes the inability of humans to go back in 

time. Horwich [1987] described how the philosopher Kurt GSdel speculated in a 

theory which is consistent with the General Theory of Relativity that time flows 

from the past to the future, passing through the present, and allowing for "time 

travel" to the past. However, based on our current technology and knowledge, we 

can safely state that time as a phenomenon has a unidirectional flow. Time is, 

therefore, a one-dimensional continuum of instants with temporally occurring 

events. The present (or now) is a gliding index that moves in a unidirectional 

form from the past to the future. As Plato put it, "It is as if we were floating on a 

river, carried by the current past the manifold of events which is spread out 

timelessly on the bank" [Honderich 1995]. 

Engineering is a practice that often tries to make statements about the 

future, especially in designing new systems. However, Aristotle asserted that 
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[Honderich 1995] contingent statements about the future have no truth value, 

unlike statements about the past and present which are determinably either true or 

false. Events of interest can be viewed to progress in time tree-like, with fixed 

branches of the past, and forming branches of the present. However, the future 

contains branching manifolds of undetermined possibilities. Decision-based 

design (DBD) would attempt to explore these possibilities in the context of their 

benefits, costs, uncertainties, and risks. Ayyub [1998 and 2001] provided a 

classification of ignorance as shown in Figure 2. Klir and Folger [1988] 

developed and used various mathematical models and uncertainty measures to 

analyze and quantify uncertainty. These models are based not only on probability 

theory, but also on various combinations of fuzzy-set and rough-set theories with 

evidence theory, possibility theory, imprecise probabilities, and various other 

theories formulated in terms of non-additive measures. The theories for modeling 

uncertainty have attributes and bases that make them each uniquely suitable for 

modeling specific types of ignorance depicted in Figure 2. Consistent methods of 

uncertainty-measuring and modeling are needed to allow combining the results 

from the models. 

Knowledge is primarily the product of the past, as we know more about 

the past than the future. For example, we can precisely describe past daily 

temperatures, but cannot accurately forecast future temperatures. Time 

asymmetry of knowledge can be attributed to several factors, of which the 

significant ones are: 

1. our limited capacity to free ourselves from the past in order to forecast the 

future; 

2. our inability to go back in time and verify historical claims gives us 

overconfidence in the superiority of our present knowledge; and 

3. the unidirectional nature of causation to the past but not the future. We tend 

to explain phenomena based on antecedents rather than consequences. 

Therefore, we assume that causes precede effects, although the order can be 

switched for some systems in order to create the effects needed for some 

causes. Thus, the unidirectional temporal nature of explanation might not be 

true all the time and sometimes can be non-verifiable. 

Engineers tend to be preoccupied more with what will happen than what 

has happened. This preoccupation might result in bias and time asymmetry. 

Engineering systems can be characterized by their goals as well as by their causes, 

thereby removing some of this asymmetry. 

Generally, engineers, like most people, tend to focus on what is known and 

not on the unknowns. Even the English language lends itself to this emphasis. 

For example, we can easily state that Expert A informed Expert B, whereas we 

can only state the contrary indirectly by using the negation of the earlier statement, 

"Expert A did not inform Expert B." Statements such as "Expert A misinformed 
Expert B," or "Expert A ignored Expert B" do not convey the same (intended) 

meaning. Another example is "John knows David," for which a meaningful direct 

contrary statement does not exist. 
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Figure 2. Classification of ignorance [Ayyub 2001 ]. 

Classification of ignorance. Knowledge and ignorance cannot be defined in 

absolute terms. It can be rightfully argued that they are not absolute, and are 

socially constructed and negotiated. A non-absolute working definition of 

ignorance can be taken as "Expert A is ignorant from B's viewpoint if A fails to 

agree with or show awareness of ideas which B defines as actually or potentially 

valid" [Smithson 1988]. This definition allows for self-attributed ignorance, and 

either Expert A or B can be attributer or perpetrator of ignorance. Ignorance can 

be classified into two types, error and irrelevance. The taxonomy of ignorance 

shown in Table 1 defines these types and their various aspects shown in Figure 2. 

Knowledge categories. Human knowledge is acquired by various means that were 

categorized by the Greek philosopher Plato (427-347 BCE) [Honderich 1995] into 

four categories as shown in Figure 3. The most basic category is called cognitive 

knowledge (episteme) that can be acquired, for example, by human senses. The 

next level is based on correct reasoning from hypotheses such as mathematics 

(dianoO. The third category (pistis) is based on appearances and deception and is 

followed by conjecture (eikasia), where knowledge is based on inference, 

theorization, or prediction based on incomplete evidence. These four categories 

define knowledge. They constitute the human cognition that might be different 

from evolutionary knowledge. The pistis and eikasia categories are based on 

expert judgment regarding system issues of interest. Although these two 

knowledge categories might by marred by uncertainty, they are sought after in 

many engineering disciplines by decision and policy makers. 
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Table 1. Taxonomy of ignorance [Ayyub 2001 ]. 
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Term 

Error 

Distortion 

Confusion 

Conflict 

Inaccuracy 

Incompleteness 

Uncertainty 

Vagueness 

Fuzziness 

Roughness 

Ambiguity 
Unspecificity 

Nonspecificity 

Probability 

Randomness 

Statistical 

Modeling 

Absence 

Irrelevance 

Untopicality 

Taboo 

Undecidability 

Meaning 

Being ignorant of something. 

Refers to bias, inaccuracy, or confusion. 

Wrongful substitutions. 

Conflicting assignments or substitutions. 

Bias and distortion in degree. 

Defined by its components of uncertainty and absence. 

Incompleteness in degree. 

Defined by its components of fuzziness and roughness. 

Non-crisp membership to sets. 

Non-crisp boundaries of sets. 

Multioutcomes of a process. 

Outcomes or assignments that are not completely defined. 

Outcomes or assignments that are improperly defined. 

Defined by its components of randomness, statistics, and 

modeling. 

Fundamental non-predictability of outcomes. 

Samples versus populations. 

Use of simplifying prediction models. 

Incompleteness in kind. 

To ignore something due to its perceived inapplicability. 

Intuitions of experts that are negotiated with others in terms 

of cognitive relevance. 
Socially reinforced irrelevance. Issues that people must not 

know, deal with, inquire about, or investigate. 

Issues that are considered insoluble, or solutions that are not 

verifiable. 

Various Classifications of Uncertainty Types 

Systems engineering provides a general framework for engineering analysis and 

design. The systems defnition can be based on observations at different system 

levels in the form of a hierarchy. An epistemological hierarchy of systems suited 

to the representation of engineering problems with a generalized treatment of 

uncertainty can provide realistic assessments of systems [Klir and Folger 1988]. 

Uncertainty modeling and analysis in engineering started with the employment of 

safety factors using deterministic analysis, then was followed by probabilistic 

analysis with reliability-based safety factors. Uncertainty in engineering was also 

classified into objective and subjective types. The objective types included the 

physical, statistical, and modeling sources of uncertainty. The subjective types 

were based on lack of knowledge and on expert-based assessment of engineering 

variables and parameters. Similar classifications are utilized in quantitative risk 

analysis for policy-related areas [Morgan and Henrion 1992]. Uncertainties in 

engineering systems can mainly be attributed to ambiguity and vagueness in 
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Figure 3. Knowledge categories [Ayyub 2001]. 

defining the architecture, parameters, and governing prediction models. 

Stochastic modeling and analysis is needed in cases of probabilistic, ambiguous, 

or aleatory uncertainty. Cognitive, vague, or epistemic uncertainty can be handled 

using fuzzy sets and logic in other modeling scenarios [Pate-Cornell 1996]. The 

ambiguity component is generally due to non-cognitive sources. These sources 

include (1) physical randomness, (2) statistical uncertainty due to the use of 

sampled information to estimate the characteristics of these parameters, (3) lack of 

knowledge, and (4) modeling uncertainty. This last is due to simplifying 

assumptions in analytical and prediction models, simplified methods, and 

idealized representations of real performances. The vagueness-related uncertainty 

is due to cognitive sources that include (1) the defmition of certain parameters, 

(e.g., structural performance---failure or survival---quality, deterioration, skill and 

experience of construction workers and engineers, environmental impact of 

projects, conditions of existing structures); (2) other human factors; and (3) 

defining the inter-relationships among the parameters of the problems, especially 

for complex systems. Other sources of uncertainty can include conflicting 

information, and human and organizational errors. 

Analysis of engineering systems commonly starts with a definition of a 

system that can be viewed as an abstraction of the real system. The abstraction is 

performed at different epistemological levels. The resulting model can depend 

largely on an analyst or engineer; hence the subjective nature of this process. 

During the process of abstraction, the engineer needs to make decisions regarding 

what aspects should or should not be included in the model. These aspects 

include the previously identified uncertainty types. In addition, there can be other 

https://www.civilenghub.com/ASCE/186438454/Risk-Based-Decision-Making-in-Water-Resources-IX?src=spdf


RISK-BASED DECISIONMAKING IX 111 

aspects of the system which are more difficult to deal with because of their 

unknown natures, sources, extents, and impact on the system. 

Uncertainty modeling and analysis for the abstracted aspects of the system 

need to be performed with proper consideration of the non-abstracted aspects of a 

system. The division between abstracted and non-abstracted aspects can be a 

division of convenience that is driven by the objectives of the modeling system or 

simplification. However, the unknown aspects of the system are due to ignorance 

and lack of knowledge. These aspects will depend on the knowledge of an analyst 

and the state of knowledge about the system in general. The effects of the 

unknown aspects on the ability of the system model to predict the behavior of the 

real system can range from none to significant. 

Uncertainty in abstracted aspects of a system. Engineers and researchers deal 

with the ambiguous types of uncertainty in predicting the behavior and designing 

systems using the theories of probability and statistics. Probability distributions 

are used to model system parameters that are uncertain. Probabilistic methods 

developed and used for this purpose include, for example, reliability methods, 

probabilistic engineering mechanics, stochastic finite element methods, reliability- 

based design formats, random vibration, and other methods. These treatments, 

however, realized the presence of a cognitive type of uncertainty. Subjective 

probabilities used to deal with it have been based on mathematics used for the 

frequency type of probability. Uniform and triangular probability distributions 

have been used to model this type of uncertainty for some parameters. Bayesian 

techniques were also used, for example, to deal with gaining information about 

uncertain parameters. Therefore, the underlying distributions and probabilities 

were updated. However, regardless of the nature of the gained information, 

whether cognitive or non-cognitive, the same mathematical assumptions and tools 

have been used. 

The cognitive types of uncertainty arise from mind-based abstractions of 

reality. These abstractions are therefore subjective, and lack crispness. This 

vagueness is distinct from ambiguity in source and natural properties. The axioms 

of probability and statistics are limiting for the proper modeling and analysis of 

this uncertainty type and are not completely relevant nor completely applicable. 

The vagueness type of uncertainty in civil engineering systems was previously 

discussed elsewhere along with selected applications of fuzzy set theory to such 

systems. 

Fuzzy-set theory has been developed by Zadeh [e.g., 1965] and used by 

scientists, researchers, and engineers in many fields. Example applications are 

provided elsewhere [Kaufmann and Gupta 1985]. In engineering, the theory was 

used to solve problems that involve the vagueness type of uncertainty. For 

example, civil engineers and researchers started using fuzzy sets and systems in 

the early 1970s [Brown 1979]. The theory has been successfully used in, for 

example, (1) strength assessment of existing structures and other structural 

engineering applications; (2) risk analysis and assessment in engineering; (3) 

analysis of construction failures, scheduling and safety assessment of construction 
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activities, decisions during construction and tender evaluation; (4) impact 

assessment of engineering projects on the quality of wildlife habitat; (5) planning 

of river basins; (6) control of engineering systems; (7) computer vision; and (8) 

optimization based on soft constraints. 

Uncertainty in non-abstracted aspects of a system. At the different levels of 

developing a model, an analyst or engineer needs to decide upon the aspects of the 

system that need and do not need to be abstracted. The division between 

abstracted and non-abstracted aspects can be for convenience or to simplify the 

model. The resulting division is highly affected by the knowledge and 

background of the analyst or engineer, as well as by the general state of 

knowledge about the system. 

The abstracted aspects of a system and their uncertainty models can be 

developed to account for the non-abstracted aspects to some extent. Generally, 

this accounting process is incomplete. Therefore, a source of uncertainty exists 

due to the non-abstracted aspects of the system. The uncertainty types in this case 

include physical randomness, vagueness, human and organizational errors, and 

conflict and confusion in information. 

The uncertainty types due to the non-abstracted aspects of a system are more 

difficult to deal with than those due to the abstracted aspects. The difficulty can 

stem from a lack of knowledge or understanding of the effects of the non- 

abstracted aspects on the resulting model in terms of its ability to mimic the real 

system. Poor judgment or human errors about the importance of the non- 

abstracted aspects of the system can partly contribute to these uncertainty types, in 

addition to contributing to the next category, uncertainty due to the unknown 

aspects of a system. 

Uncertainty due to unknown aspects of a system. Some engineering failures have 

occurred because of failure modes that were not accounted for in the design stages 

of these systems. This can be due to (1) ignorance, negligence, human, or 

organizational errors; or (2) a general state of incomplete knowledge about a 

system. These unknown aspects depend on the nature of the system under 

consideration, the knowledge of the analyst, and the state of knowledge about the 

system in general. The non-accounting of these aspects in the models can result in 

varying levels of their ability to mimic the behavior of the system. The effects on 

the models can range from none to significant. In this case, the uncertainty types 

can include physical randomness, human and organizational errors, and lack of 

knowledge. 

Engineers have dealt with non-abstracted and unknown aspects of a system by 

assessing modeling uncertainty, which is defined as the ratio of a model's 

predicted variable or parameter to the value of the variable or parameter of the real 

system. This ratio, which is called bias, is commonly treated as a random variable 
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that can consist of objective and subjective components. This approach is based 

on two implied assumptions: (1) the value of the variable or parameter for the real 

system is known or can be accurately assessed from historical information or 

expert judgment, and (2) the state of knowledge about the real system is 

absolutely complete and reliable. For some systems, the first assumption can be 

approximately examined for its validity. The second assumption cannot be 

validated because of its absolute strictness. 

Potential Areas of Application: Verification and Validation 

To better understand the verification and validation (V&V) process (see Figure 4), 

a formal treatment of uncertainty and error is necessary. An error can be due to 

distortion, which is a recognizable deficiency in any phase of modeling that is not 

due to lack of knowledge or to incompleteness. Uncertainty, however, is a type of 

error that represents a potential modeling deficiency due to lack of knowledge. 

Uncertainty can be mainly attributed to ambiguity and vagueness in defining the 

architecture, parameters, and governing prediction models for the system. 

Modeling uncertainty arises from using analytical models to predict system 

behavior. Statistical uncertainty arises from using samples to characterize 

populations. In this paper, expert-opinion elicitation is presented as a way to deal 

with uncertainty in selected technical issues related to a system of interest. 

Verification. The verification process deals with the distortion type of error that 

can be modeled using numerical methods. Verification consists of three stages: 

conceptual model verification, design verification, and code verification. The 

verification can be done by comparison, tests of agreement between the 

computational model and solution, and benchmark results (analytical or very 

accurate numerical solutions) of simplified model problems, as shown in Figure 5. 

Validation. The validation process (see Figure 6) deals with the uncertainty type 

of error. Validation consists of two stages: conceptual model validation, and 

results validation that can be done by expert-opinion solicitation. To perform the 

validation of a design, the uncertainty for that system needs to be modeled. The 

uncertainty can be modeled using fuzzy sets, probability, statistics, and munerical 

methods. The system can be divided into its abstracted aspects, non-abstracted 

aspects, and unknown aspects. Probability distributions are used to model 

parameters that are uncertain in the abstracted aspects of the system. The 

vagueness is dealt with by fuzzy sets. The non-abstracted and unknown aspects of 

the system are treated by assessing modeling uncertainty or bias, which is treated 

as a random variable. The next section describes expert-opinion elicitation, a 

proposed method for results validation. 
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