
DESIGN OF SHALLOW FOUNDATIONS

SAMUEL E. FRENCH

Design of Shallow Foundations

Samuel E. French, Ph.D., P.E.

1801 Alexander Bell Drive Reston, Virginia 20191–4400

Abstract: This book delivers a balanced presentation of both soils and structures as they relate to shallow foundations. From soils, it includes a treatment of relevant soil properties and soil mechanics at shallow depths. From structures, it includes a summary of loads on foundations and the deformations produced by such loads. The focus, however, remains at the founding line where the particular structural design is matched to the particular soil conditions. This book is intended for use by students as well as the practicing engineer.

Library of Congress Cataloging-in-Publication Data

```
French, Samuel E., 1930–
Design of shallow foundations / Samuel E. French.
p. cm.
Includes bibliographical references and index.
ISBN 0-7844-0371-6
1. Foundations–Design and construction. 2. Soil mechanics. 3. Load factor design.
I. Title.
TA775.F735 1999
624.1'5–dc21
99-12170
CIP
```

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document. ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefore. This information should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing this information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

Photocopies. Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by ASCE to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$8.00 per chapter plus \$.50 per page is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923. The identification for ASCE Books is 0-7844-0371-6/99/ \$8.00 + \$.50 per page. Requests for special permission or bulk copying should be addressed to Permissions & Copyright Dept., ASCE.

Copyright © 1999 by the American Society of Civil Engineers, All Rights Reserved. Library of Congress Catalog Card No: 99-12170 ISBN 0-7844-0371-6 Manufactured in the United States of America.

CONTENTS

PREFACE

T A	B	LI	E	0]	F	CONV	ERSION	F.	A C	T (O R	S 1	
-----	---	----	---	----	---	------	--------	----	-----	-----	-----	------------	--

PART I TYPES OF LOADS AND TYPES OF SOILS

Chapter 1 Applications

Shallow Foundations in Modern Construction	5
Common Types and Configurations of Buildings	5
Common Types and Configurations of Foundations	8
Common Soil Pressures and Settlements	-
Standard Test Specifications	12
Useful Approximations	

Chapter 2 Gravity Loads on Foundations

General Categories of Loads on Structures	15
Allowable Footing Pressures for Gravity Loads	15
Gravity Loads	16
Distribution of Gravity Loads to Foundations	20
Example Calculations of Gravity Loads on Footings	23
Combinations of Gravity Loads	26
Summary of Gravity Loads on Footings	27
Review Questions	

Chapter 3 Lateral Loads on Foundations

Types of Lateral Loads	31
Stability under Combined Loading	32
Wind Velocities and Stagnation Pressures	
Shape Factors for Wind Loads	37
Calculation of Base Shear due to Wind	
Overturning Moment due to Wind	
Earthquake Loads on Structures	
Seismic Risk Zones and Zone Factors	43
Seismic Response of Building Systems	45
Soil Profile Type for a Building Site	45
Seismic Coefficient for a Structure.	
Calculation of Base Shear due to Earthquake	48
Overturning Moment due to Earthquake	
Effect of Lateral Load on Footings of Rigid Frames	
Restoring Moment and Frictional Shear Resistance	

Drift in a Rigid Frame	55
Summary of Foundation Loads on a Rigid Frame	
Effect of Lateral Load on Foundations of Braced Frames	58
Drift in a Braced Frame	58
Restoring Moment and Frictional Shear Resistance	59
Allowable Soil Pressures for a Braced Frame	62
Summary of Foundation Loads for a Braced Frame	63
Load Combinations for Final Design	65
Applications in Determination of Design Loads	
Review Questions	70

Chapter 4 Classifications and Properties of Soils

Broad Soil Groupings	75
Response of a Soil to Foundation Loads	
Geologic Origins of Soil	78
Soil Profiles and Soil Horizons	79
Grain Size and Distribution	81
Plasticity and Atterberg Limits	84
Consistency and Textural Classification of Soils	
Engineering Classification of Soils	88
Index Properties of Soils	
Review Questions	

PART II RESPONSE OF A SOIL MASS TO FOUNDATION LOADS

Chapter 5 Strength and Pressure Dispersion in Soils

Permeability, Effective Stress and Submergence	105
Measurement of the Shear Strength of Clays	108
Measurement of the Shear Strength of Sands	113
The Coulomb Equation for the Strength of Soils	122
Dispersion of Load into a Soil Mass	
Approximate Dispersion of Load into a Soil Mass	
Pressure Dispersion through Underlying Strata	129
At-Rest Pressures in a Soil Mass	132
In Situ Properties of Soils	135
Review Questions	

Chapter 6 Calculation of Allowable Pressures

Levels of Accuracy of the Failure Analysis	143
Ultimate Shear Failure in a Soil Mass	144
Allowable Bearing Strength of a Soil Mass	148
Corrections for Shape of Footings	
Corrections for Depth of Founding	159
Corrections for Groundwater Level	

Corrections for Lateral Loads	
Common Factors of Safety in Soils	
Use of a Reference Footing in Strength Calculations	
Applications in Calculating Bearing Capacity	
Review Questions	

Chapter 7 Settlement of Foundations in a Soil Mass

Consolidation and Settlement in Clays	
Degree of Consolidation	
Overconsolidated Clay	
The Consolidation Test for Clay Soils	
Comparative Time-Consolidation Relationships	
Fragmentation and Settlement in Sands	
Review Questions	

Chapter 8 Calculation of Settlements

Differential Settlements	
Reliability of Settlement Calculations	207
Use of a Reference Footing in Settlement Calculations	
Settlement Calculations in Normally Consolidated Clays	
Settlement Calculations in Overconsolidated Clays	
Settlement Calculations in Sands	
Modulus of Subgrade Reaction	
Comparison of Response of Clays and Sands to Load	
Review Questions.	

PART III DESIGN OF SHALLOW FOUNDATIONS ON A SOIL MASS

Chapter 9 Effects of Soil-Structure Interaction

Summary of Allowable Soil Pressures	
Estimated Pressure-Settlement Relationships	254
Effects of Structural Design on Foundation Design	256
Footings with Vertical Load Only	256
Effects of Column Moments on Footing Rotations	257
Effects of Footing Rotations on Soil Pressure	259
Generalization of Effects of Rotations	
Attachment of Columns to Footings	
Peak Pressure in Strength Calculations	
Applications in Selecting Final Footing Sizes	
Presumptive Bearing Pressures	
Variations of Contact Pressures under a Footing	
Review Questions	

Chapter 10 Comparative Selection of Footing Sizes

Interaction within a Group of Footings	
Relative Settlements between Footings	
Applications in Selecting Footing Sizes	
Effects of Close Proximity	
Effects of Unequal Loads	
Effects of Intermixed Footing Types	
Effects of Adjacent Excavations	
Review Questions	

PART IV RELATED TOPICS IN FOUNDATION SYSTEMS

Chapter 11 Other Topics in Foundation Design

Special Design Conditions		
Combined Footings		
Lateral Friction Loads on Footings		
Foundations for Stucco or Decorative Masonry		
Unreinforced Foundations		
Rubble or Masonry Foundations		
Treated Timber Foundations		
Foundations on Expansive Clays		
Review Questions		
•		

Chapter 12 Field Tests and the Soils Report

Initiation of a Soils Investigation	
Preliminary Assessment of Site	
Scope of the Site Investigation	
Field Sampling and Testing	
Field Load-Settlement Tests	
Common Laboratory Tests	
The Soils Report	
Review Questions	

Ref	rences	6.	5
-----	--------	----	---

Index	69
-------	----

PREFACE

The study of foundations is invariably treated as two separate and distinct topics: the study of shallow foundations and the study of deep foundations. The concepts, approaches and practices involved in these two topics are quite different; it is a very natural choice to study them separately. This book deals with the first topic, the study of shallow foundations. Traditionally, the design of routine shallow foundations is presented at the undergraduate level, while the study of deep foundations is ordinarily presented in more advanced work, quite often at the graduate level.

The design of shallow foundations necessarily involves two disciplines: soil mechanics and structural mechanics. Specialists in soils are somewhat inclined to view foundation design as a soils problem with implications in structures. Specialists in structures are similarly inclined to view foundation design as a structures problem with implications in soils. In this text, only the most common case is considered, where foundation design is an interwoven indistinct melding of the two disciplines.

It is intended that this book will set forth a balanced presentation of both soils and structures as they relate to foundations. From soils, it includes a treatment of relevant soil properties and soil mechanics at shallow depths. From structures, it includes a summary of loads on foundations and the deformations produced by such loads. The focus, however, remains at the founding line, where the particular structural design is matched to the particular soil conditions.

The approach used in this book has been simplified where such simplification does not diminish accuracy. However, there should be no delusions about high levels of accuracy in foundation design, where at best, concrete properties may be accurate to two places and soil properties may be accurate to one. Elaborate methods of analysis requiring high levels of predictability in the material properties are avoided.

In any field of study as new as soil mechanics, numerous fragments of information will continually be generated as research expands piecemeal in all directions. It should be expected that some of these fragments will be shown in future years to be relevant, some merely peripheral. There has been a concerted effort in the preparation of this textbook to bypass such a mass of fragmented information and to focus on a single line of "established" and proven methods. Some of these established methods will undoubtedly be superceded in future years as newer,

better and more efficient methods emerge. For now, the methods presented here have been chosen simply because they are known to work. They will not cease to work just because more accurate methods or more comprehensive methods or more efficient methods are developed in the future.

This book is intended for use both by students as well as persons already in practice. It is intended to include architecture, construction and engineering technology as well as civil engineering. It is presumed that the user will have taken the usual preparatory courses in statics and strength of materials. It is also presumed that the user will be fully familiar with concepts of stress and strain, to include the Mohr's circle analysis for state of stress at a point.

The Imperial (British) system of weights and measures is used exclusively in this text. However, in deference to the publisher's policy of including a ready and convenient means of conversion to SI units, a table of common conversion factors is included at the beginning of the text.

The exclusive use of Imperial units rather than SI units is a matter of practicality rather than preference. In Memphis, for example, there has been only one application in memory for a building permit in metric units. That application (1996) was from a Canadian engineering firm on behalf of their Canadian client. All materials manufactured to metric standards (doors, windows, plywood, plumbing fixtures, pipe, etc.) were presumably shipped from Canadian suppliers; they are not generally available in the U.S.

Since the conversion to SI units is not proceeding at a rapid pace, the short life of about eight years for a book such as this requires that currently familiar terms, phrases and measurements be used. In consideration of market size and market appeal in the U.S., the author has chosen to stay with the more familiar Imperial units.

In U.S. literature, the practice of providing parenthetic SI units following each use of Imperial units seems to promote clutter with no apparent promotion of conversion. Since there is a conscious effort in all of the author's books to reduce clutter, the practice of using parenthetic SI units is avoided here.

As with his earlier books, the author is again indebted to his wife Sherry, who typed the original manuscript of the text. Her unwavering support of these speculative ventures is gratefully acknowledged.

Samuel E. French, Ph.D., P.E. Martin, Tennessee, 1998

TABLE OF CONVERSION FACTORS FOR UNITSCOMMONLY USED IN FOUNDATION DESIGN

To convert	То	Multiply by
inches	millimeters	25.400
inches ²	millimeters ²	645.16
inches ³	millimeters ³	16387
feet feet feet ² feet ³ feet ³	millimeters meters meters ² meters ³ liters gallons	304.80 0.3048 0.09290 0.02832 28.3169 7.48055
pounds (lbs)	Newtons (N)	4.44822
kips (k)	kilonewtons (kN)	4.44822
slugs (lb•sec ² /ft)	kilograms (kg)	14.59390
lbs/ft (plf)	Newtons/meter (N/m)	14.59390
kips/ft (klf)	kilonewtons/meter (kN/m)	14.59390
lbs/in ² (psi)	N/mm ² (MPa)	0.006895
kips/in ² (ksi)	N/mm ² (MPa)	6.89475
lbs/ft ² (psf)	Newtons/meter ² (Pa)	47.8803
kips/ft ² (ksf)	kilonewtons/meter ² (kPa)	47.8803
lbs/ft ³ (pcf)	N/m ³	157.0874
kips/ft ³ (kcf)	kN/m ³	157.0874
gallons(gal.)	liters	3.785
gallons of water	pounds	8.342
miles/hour (mph)	kilometers/hour (kph)	1.609
yards ³ (cy)	meters ³	0.76455