
All Pareto front solutions were evaluated against an independent test suite of randomly generated 

contamination events, and for each event, a randomly generated chlorine input pattern with 30% uniform 

variably about the baseline chlorine input concentrations was imposed in the simulation event. Results of 
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Figure 1: Evaluation of the generated sensor networks showing the ratio of contamination events

where the population affected is less than the prescribed maximum allowable population affected. For

evaluation, the maximum allowable population is 202 people 

Figure 2: Evaluation of the sensor network designs. 
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evaluation are shown in Figure 2. It is clear that the sensor networks designed to detect the contaminant, 

nicotine, perform poorly when more realistic water quality data are used.  

 

A small sensitivity analysis of the baseline 5 sensor solution was performed to understand the influence of 

the chosen parameters on the optimization results. The gamma safety factor in the objective function was 

set to 1, 3, and 5, and evaluated; and the maximum allowable population affected in the objective function 

was set to 13, 67, and 134 people and evaluated (shown in Figures 3(a) and 3(b)). For solutions with the 

largest populations affected violating the prescribed maximum allowable population affected (and lowest 

number of false positives) the gamma factor showed to be less influential than in solutions with lower 

populations affected. This is indicative that the solutions with lower populations affected generally have 

larger variability in the respective population affected due to water quality uncertainty. In contrast, 

changing the maximum allowable population affected all solution�s performance equally.  

Within the EDA the del threshold value was set to 1.5, 4, and 8 and evaluated; and the window size was 

set to 50, 100, and 200 timesteps (roughly 12, 24, and 48 hours) and evaluated, (Figures 4(a) and 4(b)). 

Decreasing the window size greatly reduced the performance of the sensor network and EDA, as the 

population affected violating the maximum allowable population affected increased, and the number of 
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Figure 3:  Pareto front sensitivity to the gamma parameter (a) and maximum allowable population 

affected (b) used in the objective function.  

P
o

p
u

la
ti
o

n
 A

ff
e

c
te

d
 p

ri
o

r 
d

e
te

c
ti
o

n
 v

io
l.
 S

a
ft
e

y
 f
a

c
to

r

0 0.5 1 1.5 2 2.5 3 3.5 4

Mean Number of false positives

150

200

250

300

350

400

450

P
o

p
u

la
ti
o

n
 A

ff
e

c
te

d
 p

ri
o

r 
d

e
te

c
ti
o

n
 v

io
l.
 S

a
ft
e

y
 f
a

c
to

r

Incramental Window size  sensitivity

Window Size=50

Window Size=100

Window Size=200

Figure 4: Pareto front sensitivity to the del threshold value (a) and incremental window size (b) used in 

the EDA. 

(a) (b) 

(a) 
(b) 

World Environmental and Water Resources Congress 2017 487

© ASCE

https://www.civilenghub.com/ASCE/189377793/WEWRC-2017-Hydraulics-and-Waterways-and-Water-Distribution-Systems-Analysis?src=spdf


false positive detection increased. Increasing the window size showed inconclusive influence on the 

sensor network and EDS�s performance; although the number of false positive detections are reduced, 

there are also greater populations affected by the contamination. Increasing or reducing the del threshold 

reduced the sensor network/EDA performance either via an increased number of false positive detections, 

or larger populations affected.  

Conclusions 

Previous work has shown the difficulty associated with detecting contamination events when using 

surrogate water quality parameters, and uncertainty in water quality would further increase the difficulty 

of event detection. This study proposes an optimization scheme designed to place water quality 

monitoring stations (sensors) at locations within a WDS that provide a strong water quality signal that is 

least sensitive to variability in background chlorine concentrations. Incorporating the population affected 

heuristic in the objective function provides numerous benefits. It implicitly minimizes the time required to 

detect a contamination event and maximizes the likelihood that a contamination event is detected; 

especially an event that occurs at a location and time that may affect large populations in the network. 

The population affected heuristic provides a unique surrogate metric to minimize the false negative 

detection rate, while minimizing the detection time of a contamination event. Incorporating a second 

objective to reduce the mean number of false positive detections then specifically choses monitoring 

station (sensor) locations where the water quality signal provides clear indication of a contamination 

event, promptly after the event takes place. The incorporation of water quality variability further drives 

the optimization algorithm to place sensors at network locations where the water quality signal and 

contamination response is most insensitive to inherent water quality variability in a water distribution 

system. 

This study comprehensively formulated the water quality monitoring station (sensor) placement problem 

with the event detection problem. Relaxing the assumption of conservative contamination in the sensor 

placement problem introduces interdependencies between sensor network and event detection algorithm 

performance. Unifying these two problem may improve the holistic performance of a system to detect 

contamination in a public water distribution system and improve public water security.  

Future work should investigate more advanced EDA algorithms and more effective optimization schemes, 

potentially even an optimization scheme where EDA parameters are also variables defined by 

optimization. The study herein was posed on a well-documented, small network; the study herein should 

be expanded to more realistic sized networks with a diverse selection of contaminants and consideration 

to more robust objectives and/or min-max objectives. 
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Abstract 

A goal of water distribution system security is to ensure that clean water is delivered to consumers. 

Potential for contaminations and cross connections make it difficult to ensure that the water being 

delivered to consumers is truly of high quality. The placement of water quality monitoring stations within 

a WDS system has proven a successful method to prevent the delivery of contaminated water. The 

locations of monitoring stations in a WDS is critical to the performance of a water quality monitoring 

station network (early warning system or EWS); ideally sensors will be placed at a limited number of 

locations which can quickly detect all contamination events. Designing a EWS to protect against every 

possible contamination event is computationally infeasible; however it is crucial that high impact 

contamination events will be detected. In this study a contamination event is defined as an intrusion 

taking place at a specific junction and time in a WDS. A probability distribution is generated according to 

the portion of a network�s population served by water that flows �downstream� from a specific junction at 

a specific time, within a defined interval of time; this portion of population would be most at risk to 

exposure of the corresponding junction and time. The newly generated probability distribution is then 

used for sampling a set of contamination events used to design an EWS. The downstream nodes are 

calculated using breadth first search and the nodal populations are calculated according to the temporal 

demands. The relative consequence of a junction being contaminated is calculated using steady state and 

dynamic hydraulic models; elevating the need to perform numerous complex water quality simulations. 

Monitoring station networks designed using the proposed importance sampling technique and traditional 

random sampling are compared. 
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Introduction 

Delivery of clean, high quality water to consumers is the primary goal of a water distribution system 

(WDS). Ensuring that the water delivered at consumer taps is truly clean can be a difficult task for 

numerous reasons, including: water quality deterioration with time, the size and complexity of water 

distribution system�s pipe network, and the general spatial and temporal sparsity of points of known water 

quality. The large distances and long travel times between points of know water quality and user taps 

introduces vulnerability in to WDS operation. Placing monitoring stations at critical locations throughout 

a WDS has shown to be an effective method to reduce the risk of delivery of low-quality water.  

Using strategically placed monitoring stations throughout a WDS has been extensively explored in prior 

research. Initially, critical sampling locations were identified (Lee and Deininger, 1992) to cover the 

largest fraction of network demand. Building off of the work of Lee and Deininger (1992), Kessler et al. 

(1998) proposed an early warning system for detecting accidental network contaminations. This work 

defined a specific �level of service� as the volume of contaminated water that can be delivered prior 

detection of a contamination based on all shortest paths of contamination transport identified within a 

network. Ostfeld and Salomons (2004) employed a Genetic Algorithm (GA) for identifying the best 

locations within a WDS for placement of a monitoring station. In this case, explicit hydraulic and water 

quality simulations were performed, and the GA identified the set of monitoring station locations for up to 

7 sensors, which met a defined level of service and maximized the detection likelihood, and detection 

redundancy. Berry et al. (2005) formulated the water quality monitoring station (hereby referred to as a 

fixed WQ sensor) placement problem as a mixed-integer problem, and employed the CPLEX® solver for 

optimization and placed sensors throughout networks of up to 470 junctions in size. The Battle of the 

Water Sensor Networks (BWSN) (Ostfeld et al. 2008) compared the performance of numerous sensor 

design algorithms (greedy algorithm, greedy randomized adaptive search (GRASP) heuristic, genetic 

algorithms, and multiple evolutionary algorithms) to minimize objectives including: the mean population 

affected, the mean detection time, the mean volume of contaminated water delivered, and maximized the 

ration of detected events. 

In fixed WQ sensor placement studies performance is often evaluated against a suite of contamination 

event scenarios, the basis for this evaluation lies in the uncertainty in knowing what contamination event 

may be imparted on to a true WDS. Thus, an EWS must be designed to best protect against any possible 

contamination event. Ideally an EWS would be designed and evaluated against every possible 

contamination event, however, this can be feasibly impossible for larger, real sized or full resolution 

WDS models. In consequence an EWS is typically designed and evaluated against a subset of all 

contamination event scenarios, such that this subset is large enough to represent the �average� effect of a 

contamination in the network. Using the contamination event subset EWSs are designed to perform 

�optimally� against this subset of contamination events. In many cases (Uber et al. 2004, Ostfeld et al. 

2008, Krause et al. 2008, Xu et al. 2010) EWSs are designed to minimize the mean or worst case of the 

objective (detection time, volume of contamination water delivered prior contamination detection, 

population affected prior contamination detection, etc.) evaluated against all possible scenarios (for 

smaller networks), or a subset of all possible scenarios.  

Monte Carlo (MC) sampling is commonly used to generate a random sample of contamination scenarios. 

A shortcoming of random MC sampling lies in the difficulty to randomly sample rare events; in the case 

of sampling WDS contamination scenarios, equal probabilities are typically assigned to all contamination 

events and in large networks the probability of sampling any single event quickly becomes< 10ି. For 

optimizing an mean or expected value of an objective, it may be adequate to use random MC sampling, 

however for designing a more robust EWSs it is desirable to ensure that the most detrimental 
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contamination events will be detected promptly. Thus, it is crucial that these most detrimental 

contamination events are included in the contamination event suite used for evaluation. There have been 

relatively few studies where the most detrimental contamination events are explicitly incorporated in the 

contamination event suite.  Perelman and Ostfeld (2010) employed Cross Entropy (Rubinsstein and 

Kroese, 2004) to iteratively reconstruct a sampling distribution to favor sampling rare, detrimental events 

to be included in EWS design. Weickgenannt et al. (2010) employed a simple flow based heuristic to re-

weight specific node�time pairs within the sampling space. For each possible node and time of 

contamination, the respective node � time pair of potential contaminant input was assigned a weight equal 

to the volume of water that emanated from the node during a time window beginning at the assigned 

node�time pair time. In the case of Weickgenannt et al. (2010) the time window was equal to the 

contamination input duration, 16 hours. This methodology is advantageous because it only requires a 

single hydraulic simulation, and for a given time window does not depend on any specific contaminant 

characteristics. Building off of these two importance sampling (IS) methodologies, this study proposes 

and evaluates an IS scheme based on the size of the population served within a defined hydraulic travel 

time from each node, at each hour of a hydraulic simulation. 

Methodology 

In the event of a water distribution system contamination, a potentially harmful substance will be 

transported from the point of intrusion, �downstream� throughout the network. Thus, as water flows from 

sources to consumers in a WDS, a contamination would likely have the greatest effect on the consumers 

immediately downstream from the intrusion point. The contamination events that that would have the 

greatest expected effect on a WDS�s population would be those which are located just upstream from 

large populations. Using only the downstream population as a nodal weighting would place the largest 

weights on the nodes located near the sources of the networks. However, there may be large travel times 

between the sources and a majority of the consumers, and a large travel time provides a large window of 

detection where an event may be detected via a monitoring station or even consumer complaints before 

large populations are affected. Thus the most detrimental events are expected to take place at locations 

where large downstream populations are within a short hydraulic travel time of the intrusion point and 

large amounts of contaminant are consumed before the contamination is realized. 

 The IS scheme proposed herein is formulated to re-weight node�time pairs (possible contamination 

intrusion locations and times) according to the size of the local population served downstream from the 

node. A time window is defined to constrain the downstream population by a hydraulic travel time. Thus, 

a weighting is assigned to each node-time pair according to the size of the population served at nodes 

within the defined hydraulic travel time (or neighborhood) from the node of intrusion. This neighborhood 

represents the all possible consumers that could be delivered contaminant in the event of an intrusion 

emanating from the respective node and time within a defined time window after intrusion. 

For computational analyses, a WDS can be represented as a graph, ܩ = (ܸ,  where network junctions (ܧ

or nodes represent vertices (ܸ) , and network pumps and pipes represent edges (ܧ) connecting vertices. 

Given this representation, various graph theory techniques can be employed to study the characteristics of 

the network including. In this study, a simple breadth first search (BFS) and shortest path algorithm are 

employed to determine the hydraulic travel times between network junctions located downstream from a 

network�s junction.  

A difficulty arises in modeling a WDS as a graph due to dynamic directions and magnitudes flow within 

pipes. It is difficult to assign a single direction and magnitude to a network�s pipe (graph�s edge) to 

represent its behavior based on a dynamic simulation. In this study, network flows are dynamic 
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throughout the defined simulation length, driven by variable consumer demands and associated pump 

schedules. To represent the dynamic network as a single directed graph, pipe flow directions and 

velocities are averaged over the defined time window, beginning at the simulated time of intrusion (ie. the 

time associated with a node time pair).  

Proposed Algorithm 

1. Using the averaged directed graph as a representation of a WDS, BFS searches through the graph to 

determine all connected downstream junctions accessible from the current initial index node (i). Equation 

(1) below shows the calculations of this set of junctions, ݀ݏ, where ܰ is the set of all nodes in the specific 

time window averaged graph, and (݅,	ݐ) represents the node�time pair of node ݅ and time ݏ݀ .ݐ(݅, (ݐ = ሼ݊ ∈ ܰ:  ሽ             (1)ݐ	݁݉݅ݐ	ݎ݁ݐ݂ܽ	݅	݁݀݊	݉ݎ݂	݈ܾ݁ܽݏݏ݁ܿܿܽ	ݏ݅	݊

2. For each node identified using BFS (the set	݀ݏ(݅,  a shortest path algorithm (Dijkstra�s) determines ,(	(ݐ

the shortest travel times from the initial node (i), to each downstream node in ݀ݏ(݅,  where time ,(ݐ

window averaged graph edges (pipes) are weighted with the average time to travel the entire pipe length 

during the defined simulation time window. 

3. The total population neighborhood of the nodes identified using BFS and within the defined travel time 

of the initial node is assigned to the respective node�time pair. Equation 2 and 3 show the calculations of 

the nodal neighborhood populations. ݀ݓݏ(݅, (ݐ = ሼ݊ ∈ ,݅)ݏ݀ :(ݐ ,݅)݁݉݅ݐ݈݁ݒܽݎݐ ݊) ≤ ,݅)ܲݏ݀              (2)		ሽ݁݉݅ݐݓ݀݊݅ݓ (ݐ = ∑ (݊)ܲ ∗ ݀௪(݊) ݀௧௧(݊)൘∈ௗ௦௪(,௧)               (3)  

where: ݀ݓݏ is the set of downstream nodes within the defined hydraulic time window, ݁݉݅ݐ݈݁ݒܽݎݐ is the 

calculated shortest travel time from node ݅ to node ݊, ݁݉݅ݐݓ݀݊݅ݓ is the defined hydraulic travel time 

window, ݀ܲݏ is the downstream population within the ݁݉݅ݐݓ݀݊݅ݓ travel time of the input node, ܲ(݊) is the population served by node ݊, ݀௪ is the cumulative demand during the defined ݁݉݅ݐݓ݀݊݅ݓ, and ݀௧௧ is the total daily demand delivered by node ݊. 

4. The re-weighted node�time pairs are used to estimate a sampling distribution proportional to the 

potential consequence of a contamination and each node�time pair. This distribution is then sampled and 

used for generating a contamination event suite used for design of an EWS. 

Figure 1 below shows the resultant node sets identified using the proposed algorithms. 
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Figure 1: Schematic representation of the identified node sets using the proposed algorithm. 

Objective Function 

EWS design was driven to minimize the population affected prior contamination detection objective 

(Ostfeld et al. 2008). The population affected objective was chosen due its relationship to the populations 

served by a WDS, and its implicit incorporation of undetected contamination events (assuming that after 

36 hours the event is realized via human detection.) The population affected prior event detection is 

calculated in the two equations below: equation 3, the cumulative mass of contaminant consumed, and 

equation 4, the respective total affected population. ܯ,௧,	 = ,௧ିଵ,ܯ + γ∆t ∗ ,௧,ܥ ∗ ,௧ߩ 																																																																																																																									(3) 
Paୣ(t) =  ێێۏ

ϕۍێێ ۔ۖەۖ
βۓ logଵۈۈۉ

,௧,൧ܯൣۇ W൘Dହ ۋۋی
ۊ
ۙۘۖ
ۖۗ ∗ P୧ۑۑے

୬୭ୢୣୱېۑۑ
୧ୀଵ 																																																																																																(4) 

where: ܯ,௧, is the mass consumed (mg), ܥ,௧, is the concentration of contaminant at junction i at time t, 

of event e (mg/L) such that M(t=0)=0, γ is the daily individual water consumption rate (L/day), ∆t is the 

simulation time step, ߩ 	is the temporal demand parameter of junction i at time t (-) calculated as the 

temporal demand divided by the average demand of node i, Paୣ(t) is the affected population at time t, of 

event e, such that	Paୣ(0) = 0 φis the standard normal cumulative distribution function, β is a  probit 

slope parameter, W	is the mean individual�s weight  (70 kg), Dହ is the dose level that affected an 

individual with a 50% probability (mg/kg), and P୧ is the population of node i. For further explanation the 

reader is directed to Ostfeld et al (2008). 

Case Study 

Experiments were conducted on the BWSN1 network (Ostfeld et al. 2008) composed of 126 nodes, 168 

pipes, 1 reservoir, 2 tanks, 2 pumps, and 8 valves. Figure 1 shows  schematic representations of the 

BWSN1 network. EPANET 2 (Rossman, 2000) was used for all hydraulic analysis and sensor network 

evaluations.  Numerous analyses were performed to understand the trends in the importance sampling 

scheme proposed herein, described below. Contamination event suites were generated using 35, 75, 400, 
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