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CHAPTER 8

Bioremediation with Bacteria and Enzymes
Kshipra Misra, S. Bala Subramanian, Satinder K. Brar, R. D. Tyagi and R.Y. Surampalli

8.1 Introduction

In the past decades, significant amounts of chemicals have been released into the
environment by agricultural, industrial, commercial and other human activities. These
chemicals have caused harm to the ecosystem and human health. These pollutants are
mainly released into the environment as metal, non-metal, metalloid, inorganic and
organic compounds (Cluis, 2004). Organic contaminants include aliphatic, alicyclic,
aromatic and polycyclic aromatic hydrocarbons comprising halogenated and non-
halogenated compounds, pesticides and explosives. Inorganic pollutants may be metals
such as Ag, Al, As, Be, Cd, Cr, Cu, Hg, Fe, Ni, Pb, Sb, Se, Zn, and radioactive elements
(Meagher, 2000).

Most remediation techniques involving physical and chemical methods are
expensive and produce secondary pollutants in the environment. In order to overcome
these problems, biological degradation of pollutants is favored because of its cost
effective and eco—friendly approach (Hattan et al., 2003). Bioremediation is a process in
which degradation of toxic compounds results in their conversion into non-toxic
substances such as CO, and H>O. This process can be facilitated either at contaminated
sites (in-situ bioremediation) or in bioreactors (ex-situ bioremediation) using
microorganisms to achieve complete detoxification of toxic compounds (Hwang and
Cutright, 2002).

Microorganisms are ubiquitous in nature and have tremendous metabolic ability
to degrade and utilize most toxic compounds as sources of energy and growth. They
possess characteristic degradative enzymes for biodegradation of respective
contaminants through aerobic or anaerobic processes. Bacteria can be classified as
aerobic and anaerobic based on their requirement for oxygen for growth. Aerobic
bioremediation has 10 to 100 times higher degradation efficiency than anaerobic
processes and is, therefore, a commonly used practice (Ahlet, et al., 2001). The rate of
degradation can be further enhanced by dispersing adapted bacteria at contaminated sites
through a process know as bioaugmentation (Quan, et al., 2004) or by adding required
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nutrients to stimulate the growth of indigenous microorganisms through biostimulation
(Trindade et al. 2005).

In general, biodegradation follows microbial metabolic pathways such as aerobic
respiration, anaerobic respiration, fermentation and co-metabolism. Bioremediation of
toxic compounds also depends upon the bioavailability of contaminant to microbes,
environmental factors and site conditions such as temperature, pH, nutrients, electron
acceptor(s), redox potential, water activity, osmotic pressure and concentration of
contaminants (Evans 2003; Thakur 2004).

This chapter gives descriptions and presents case studies associated with
common soil and groundwater bioremediation techniques. These techniques include
biosparging, bioventing, biostimulation, bioaugmentation, bioleaching, anaerobic and
aerobic biotransformation, biological fixation, enzyme-catalyzed treatment, biological
reactors and natural attenuation.

8.2 Biosparging

Biosparging is an in-situ remediation technology that utilizes naturally occurring
microorganisms to degrade organic contaminants of concern (COCs) within the
saturated zone. The rate of bioremediation is enhanced by inducing air (or oxygen) flow
using air injection wells, and if necessary, by the addition of air to the saturated zone
(Weston 1988).

A schematic of a biosparging system is illustrated in Figure 8.1. The process is
similar to an in-situ air sparging system (IAS), except that a lower air flow rate is used to
enhance biotransformation and minimize volatilization (primary mechanism of IAS).
The air flow rate is controlled by the metabolic demand of microorganisms to
successfully remediate the saturated zone. Biosparging has proven most effective in
reducing petroleum products at leaky underground storage tank sites (Norris, et al.
1994). Although constituents adsorbed to aquifer material can also be treated to a certain
extent, the technique is not suitably effective for highly volatile contaminants.

8.2.1 Factors Affecting Biosparging Processes

There are various factors which are responsible for effective in-situ
bioremediation of ground water contaminated with petroleum hydrocarbons (EPA-542-
R-00-008). These can be divided into two categories: site characteristics and constituent
characteristics.
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Figure 8.1 Schematic representation of in-situ bioremediation of organic contaminant of
concern (COCs) using biosparging system combined with soil vapor extraction for
ground water treatment.

8.2.1.1 Site Characteristics

Various soil characteristics play a pivotal role in controlling biosparging
processes. These include- intrinsic soil permeability, soil structure and stratification,
temperature, pH, oxygen concentration, nutrients, microbial density and iron content.

Intrinsic Soil Permeability

The intrinsic permeability of a soil is a measure of its ability to transmit fluids
which determines the rate at which oxygen can be supplied to the hydrocarbon
degrading bacteria. At least 3 to 3 ¥2 pounds of oxygen is generally needed to degrade
one pound of petroleum hydrocarbons. The coarse grained soils (sands) have greater
intrinsic permeability compared to fine grained soils (clays and silts) and should be
greater than 10 for effective bioremediation (EPA 542-R-00-006).
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The intrinsic permeability of a saturated zone can be calculated using the
following equation (Aelion et al. 1995):

k=K (wpg) (Eq.8.1)

where k = intrinsic permeability (cm?)
K = hydraulic conductivity (cm/sec)
1= water viscosity (g/cm - sec)
p = water density (g/cm’)
g = acceleration due to gravity (cm/sec?)

Soil Structure and Stratification

These characteristics include the type of soil present and its micro and macro
structure. Soil structure and stratification can control the biosparging pressure and
distribution of oxygen and nutrients in the saturated zone (Clayton et al. 1995).

Temperature

The optimal bacterial growth is found to be in the range of 10 to 45° C. The rate
of microbial activity typically doubles for every 10° C rise in temperature within this
range. The rate of degradation decreases below and above the mentioned range of
temperature (Filler 1997; Webb and Phelan 1997). In most areas of the U.S., the average
groundwater temperature is about 13°C, but groundwater temperatures may be
somewhat lower or higher in the extreme northem and southern states. In most cases,
subsurface microbial activity has been found to decrease significantly at temperatures
below 10°C and distinctly bring to an end below 5°C. Biosparging is an in-situ
technology, the bacteria are likely to experience stable groundwater temperatures with
only slight seasonal variations.

pH

Values of pH between 6 and 8 are most suitable for bacterial growth. The pH of
groundwater can be adjusted prior to and or during biosparging process (McCray and
Falta 1997). However, pH adjustment is expensive approach due to natural buffering
capacity of the groundwater system which requires continuous adjustment and
monitoring throughout the operation. In addition, during pH adjustment, it may lead to
rapid changes in pH and lead to unfavourable conditions for microbial activity.

Oxygen Concentration

The rate of biodegradation greatly depends on the availability and supply of
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oxygen at a contaminated site. Oxygen serves as a terminal electron acceptor in aerobic
metabolic processes. In the absence or low availability of dissolved oxygen microbes
can utilize other electron acceptors (such as nitrate or sulfate) for degradation of
contaminants (McCray and Falta 1996). However, this occurs at significantly reduced
rates of transformation.

Nutrients

Nutrients play a major role in bacterial growth and metabolism. Frequent
addition of nutrients is necessary to maintain the required bacterial populations at
contaminated sites. However, over addition of nutrients at the polluted sites may inhibit
the rate of metabolism (Norris, et al. 1993). Nitrogen addition can lower pH, depending
on the amount and type of nitrogen added.

Microbial Density

Microbial density is an important factor for effective biosparging with a typical
range from 10* to 10’ CFU/g of soil. The minimum plate count of heterotrophic bacteria
in a biosparging zone should not be less than 10° CFU/g (Sleep 1998). Otherwise, the
rate of remediation will be too slow.

Iron

Ferrous iron [Fe*?] present in soil precipitates to iron oxide [Fe*’] by oxidation
reaction. Ferric iron precipitates can block the soil pore spaces and reduce soil
permeability (Mesania and Jennings 2000). Hence, care should be exercised in such soils
or groundwater systems.

8.2.1.2 Constituent Characteristics

Success of biosparging process also depends on certain features of chemical
constituents present:

Chemical Structures

It is a chief rate determining parameter of biodegradation in biosparging
processes. Low molecular weight (nine atoms or less) aliphatic and mono aromatic
compounds biodegrade faster than higher molecular weight and complex compounds as
summarized in table 6.1 (Nakhla and Niaz 2002).
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Table 8.1 Types of constituents and their rates of biodegradation.

Chemical Contaminants Sources Rate of Degradation
Alkanes and n-butane, I-pentane, n-octane, Gasoline, diesel, Easy for microbial
mono- nonane, methyl butane, kerosene, heating degradation
aromatics dimethylpentenes, methyloctanes, fuels, heating oil (faster rate)
benzene, toluene, ethylbenzene, lubricating oils

xylenes, propylbenzenes, decanes,
dodecanes, tridecanes and

tetradecanes.
Poly Naphthalenes, fluoranthenes, Diesel, kerosene, Complex microbial
aromatics pyrenes, acenaphthenes heating oil, degradation

lubricating oils (slow rate)

Concentration and Toxicity

The presence of very high concentration of petroleum compounds (> 50,000
ppm) or soluble heavy metals (> 2,500 ppm) at contaminated sites can be toxic and tend
to retard the growth and reproduction of bacteria responsible for biodegradation. Very
low concentrations of contaminants also diminish bacterial activity towards initiation of
biodegradation processes. Therefore, an optimum level of pollutant concentration is
required (Chapelle 1999). Pollutant concentration below 0.1 ppm is not generally
treatable using biological process. Similarly > 95 % degradation of total petroleum
hydrocarbons (TPH) is also very difficult to biodegrade due to presence of recalcitrant or
non-biodegradable petroleum hydrocarbons.

Vapor Pressure

Vapor pressure plays an important role in evaluating bioremediation rates.
Constituents with higher vapor pressures are generally volatilized and not biodegraded.
Typically, constituents with vapor pressures > 0.5 mm Hg are likely to be volatilized by
induced air stream and those with vapor pressures < 0.5mm Hg undergo in-situ
biodegradation mediated by soil bacteria (Widdowson et al. 1997).

Product Composition and Boiling Point

Both of these parameters control constituent volatility. Compounds of higher
molecular weight and higher boiling points require longer duration for microbial
degradation (Leahy and Colwell 1990). Petroleum products are often classified by their
boiling point (rather than vapor pressures) and generally all petroleum-derived organic
compounds are biodegradable. Products which have boiling points of < 250°C to 300°C
will volatilize to some extent and can be removed by a combination of volatilization and
biodegradation in a biosparging system. For example in biosparging, biodegradation of
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petroleum hydrocarbons such as gasoline (40-225°C), kerosene (180-300°C), diesel fuel
(200-338°C) and heating oil (> 275°C) requires lesser time than the lubricating oil which
is non volatile.

Henry’s Law Constant

As has been already discussed in chapter 2, Henry’s Law constant is used for the
quantitative measurement of volatility of a constituent. It is an important factor that
quantifies the relative tendency of a dissolved constituent to convert into vapor phase.

8.2.2 System Design

Laboratory treatability experiments followed by field pilot scale studies are often
carried out for successful evaluation of the potential and effectiveness of biosparging for
a given contaminated site (Aelion et al. 1996). Commonly, microbial screening and
biodegradation studies at the laboratory level and biosparging treatability tests at the
field level are conducted to determine, verify and quantify the potential effectiveness of
the approach and provide necessary data to design a system.

The essential goals in designing an air sparging system are to configure the wells
and monitoring points in order to optimize influence of air on the plume for maximum
removal of toxic contaminants. There is also a need to provide optimum monitoring and
vapor extraction points ensuring minimal migration of the vapor plume (Johnson et al
1993). The placement and number of air sparge points can affect the sparging pressure
and distribution of air in the saturated zone. These air sparging points are required to
aerate the dissolved phase plume determined primarily by permeability and structure of
soil. The bubble radius primarily depends on hydraulic conductivity of the aquifer
material in which sparging takes place and should be determined based on the pilot scale
studies. Other factors which affect sparging are soil heterogeneities and differences
between lateral and vertical permeability of the soils (Flathman and Jerger 1994).
General guidelines for developing a biosparging pilot test plan are summarized in Table
8.2.

8.2.3 Advantages and Disadvantages
Biosparging is an enhanced in-sifu bioremediation technology widely used for

degradation of organic pollutants and petroleum hydrocarbons at contaminated sites in
ground water. Various advantages and disadvantages are presented in Table 8.3.
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